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PREFACE

Inmodernengineering,particularlyinaircraft,engines, ships, etc, that is

wherever it is necessary to reduce the weight, thin walled structures, the main

components of which are thin bars, plates and shells, are widely used.

The characteristic property of these parts is their flexibility, i.e., their

relatively small resistance to bending and torsion; therefore, when deformed under

load, the displacements of the elements of such structures are comparable to

their linear dimensions. The classical theory of elasticity, in particular the

theory of shells, is based on the assumption that the displacements of points in the

body are infinitestimal and this enables one to neglect, within mathematically

strict limits, the squares and higher orders of displacements in comparison with

the first order. This so-called linear theory was dealt with by V. Z. Vlasov

/0.4, 0.5], A.L. Goldenvaiser /0.8/, A.I. Lurie ]0.10], A. Love ]0.11/,

V.V. Novozhilov /0.15/, and others.

The theory of flexible bars, plates, and shells must be free of such geometri-

cal hypotheses. In this respect it is "geometrically non-linear". Apart from this

it may be "physically non-linear" if the stress-strain relation of the body is non-

linear. The basis of the general theory of elasticity which takes into account both

geometrical and physical non-linearity is given in V.V. Novozhilov's monograph

/0.14/, which also gives a rich bibliography of Soviet and foreign works (up to
1946 inclusive).

This monograph, the only one of its kind, deals only with the three-dimen-

sional problem of the theory of elasticity, barely touching upon the theory of

flexth]e bodies. We therefore thought it necessary to deal with the special problem

of flexible plates and shells in our monograph. Owing to the magnitude of the

problem, we tackled only the geometrical non-linearity.

The reader may find the theory of physical non-linearity in the well-known
monograph by A.A. Ityushin ]0.9] and in journals, all of them being based, however,

on the assumption of small displacements.

One of the most important problems of the theory of flexible shells is the

investigation of the stability of plates and shells. This problem is of interest to

us and therefore we have given it particular attention. We did not intend to com-

pile a monograph to replace the well-known work of S. P. Timoshenko /0.16/,

"The Stability of Elastic Systems" in which the simpler cases of loss of stability

of plates and shells, which are considered classical examples now, were adequately

treated. In many aspects, however, Timoshenko's book no longer reflects our

present state of knowledge in this field.

We hope that our monograph will largely fill this gap and provide a useful help

to undergraduate and post-graduate students in universities who wish to specialize

in the theory of elasticity, for post-graduates in other engineeringfaculties, and for

engineers and scientists who have to design structures and calculate strength and

stability.

We have dealt with the general non-linear theory of shells without using the

tensor calculus, unlike a number of Soviet and foreign papers dealing with this



theory /0. i, 0.7, 0.12, 0.19-0.22]; nevertheless i_ is possible that some parts of

the book will be difficult for the beginner because t _e problems dealt with are very

intricate. Such parts are marked by a star * atthe be ginning and the end of the text and

can be omitted atfirst reading*. The greater part of tae book, sections 25- 65, deals with

the application of the general theory. For the convenience of the reader who is

mainly interested in this part, section 25 contains t short summary of the preceding

material, insofar as it is indispensable for an understanding of the following.

In selecting the material for this monograph, preference was given to those

problems which the first of the authors and his students and co-workers had dealt

with for 20 years. In dealing with the material, great attention was also given to

the contributions of many other Soviet and foreign scientists. We had to refer very

often to the monographs on investigations by I. G. Bubnov ]0.3], P.F. Papkovich

]0.17], Wei-Tsang Chien ]0.19/, and others. At the end of the booka bibliography

of references is given; the numbers of the relevani chapters are shown by Roman

numerals. Monographs and general literature are _arked by the prefix "0".

Sections 14-23, 25-26, 35-62, were written byKh. M. Mushtari who also

edited the book as a whole. Sections 2-13, 24, 63- 35 are by K.Z. Galimov and

sections 27-34 by I.V. Svirskii.

The following members of the Kazan' Branch of the Academy of Sciences of

the USSR have given valuable help in compiling the material for the monograph:

M.S. Kornishin, A.V. Sachenkov, R.G. Surkin, F.S. Isanbaeva, N.I. Krivosheev,

and N.S. Ganiev to whom *-.he authors hereby wish t,_express their thanks.

Finally it should be noted that we do not deal Jn this monograph with the

theories of non-isotropic and laminar shells, suppo-_ted shells or the dynamic

problems of the theory of shells. As these are problems of a specific kind, we feel

they should be dealt with in a special monograph so as to avoid superficial treat-

ment of the subject.

Kazan', February 1956

Institute of Physics and Engineering
of the Kazan' Branch of the

Academy of Sciences, USSR

In parts covering several pages every page curries the star at the beginning.

In the Russian original these parts are in small ty3e - Translator.



§I. FundamentalConceptsandNotations*

A body is called a shell if it is bounded by two curved surfaces, the distance

between them being small in comparison with the other dimensions of the body. The

geometrical locus of all points equidistant from the two boundary surfaces of the
shell is called the middle surface. The distance between surfaces, measured

normal to the middle surface, is called the thickness of the shell. In all cases,

except where stipulated otherwise, the thickness of the shell is assumed to be
constant.

Notations for the description of the geometry of defor-
mation of the shell.

o --Middle surface of shell before deformation;

Hi = l/k1, Rz = 1/k2--the principal radii of curvature of the middle

surface o, i. e., the greatest and the smallest radii of curvature of the normal

sections;

a_ , _2 --orthogonal curvilinear coordinates, giving the position of a point on
the middle surface before and after deformation;

a, _ --the same quantities for the case when lines of curvature are taken as

coordinate lines;

Al dal, A2da2, and correspondinglyAd_L, Bd_--line elements of the coor-
dinate lines;

el , e2, m--unit vectors tangent to the lines al and _l2 and the outward normal

to the surface o which form a right-handed orthogonal triad (see Figure 1);

w0--projection in the direction of the vector _ of the initial displacement

which transforms a surface of simple geometrical form into a surface o ° before

the application of the load;

eo Eo, 2_,102__relative elongations and shear corresponding to the above dis-
placement;

xo ×0 xoa --changes of curvature and twist of the reference surface o caused

by the initial displacement which characterizes the surface o°;

u_, u21, wl --the projections on the unit vectors e 1, e2, m of the vector of dis-

placement, due to a load carrying the surface o °into the surface ol;

u I, v I, w I --the same quantities for lines of curvature;

e_, e I, 2_, x_, ×_, _]2--elongation, shear, change of curvature, and twist of

the surface 0 ° when transforming into surface o I.

When considering a single deformed state for a given load, one can omit the

index "I" on the symbols u] ......... But if the equilibrium position o I is not stable

and a change to a new position of equilibrium o* is possible, then the additional

displacements, elongations, etc, which characterize this change are denoted by

ul, .... ×12 respectively.

* We give here merely a short list of some concepts and notations which will be

dealt with fully in the corresponding parts of the book.



Weadoptthefollowingnotationsfor static q,tantities:

T_I, T_2, T_2=T_,--Tensile and shear stresses of the middle surface a I, per

unit length of the relevant cross section.

T_[ T2I. TiI2-the same quantities for lines of =urvature;
Ml_. MI2, M_2=MII or correspondingly M_, M I, M_f-bendingand twisting

moments per unit length of cross-section;

T I..... Miz-additional forces and moments caused by the loss of the stability

of equilibrium of the shell;

p -- density of normal external pressure on __he shell;

Pl, P2, r-external tensile and shearing force:-= applied to the normal edge-
sections of the shell, The positive directions of the forces and moments are shown

in Figure 2.

General notations

E and v --modulus of elasticity and Poisson's ratio of the material of the
shell which are taken to be constant;

Et
K = 1 --v 2 rigidity under compression;

D : Et3/12 (1 --v2)--rigidity under bending, tke so-called flexural rigidity;

1, 2--Symbol denoting that the other formulas result from the previous for-
mulas, by permutation of the indices I, 2, and of 1he letters u, v;

The symbol - shows that the two quantities _re of the same order of mag-
nitude;

{.. ),1 a__(____, {...),2 :• _1 a(...)a(_2 abbreviati( ns for par tial derivatives, used ordy

in places where they cannot be misunderstood;

ep --relative elongation at the limit of propo:'tionality of the material of the
shell;

[a b] and ab--respectively the vector and scalar products of vectors a and b.

We shall assume that elongations and shears are small in comparison with

unity, although the displacements and changes of c_rvature are of finite and even

of considerable magnitudes.

The bending of the shell is called medium when the deflection is comparable

with the thickness of the shell, but is small compa] ed with the other dimensions

of the shell. It is called large when the displacem_ nt is of the same order as the

length and width of the shell. In sections 2-19 of t_is monograph, the general

non-linear theory of shells is dealt with, without r ._strictions on the degree of

bending; the other sections deal with the case of medium bending.

Let L be the characteristic dimension of the :thell (its width or its smallest

radius of curvature}. The shell is considered thin _hen

but if

then the shell is of medium thickness.

The subsequently described theory was in fac derived for thin shells for

small deformations, by neglecting quantities of order tp in comparison with unity.



It can be used in many cases for shells of medium thickness but then the permissib-

le error is of the order of _ in comparison with unity.

In the following, the Kirchhoff-Love hypothesis is assumed, in which
the perpendicular to the middle surface before deformation remains perpendicular

to it also after deformation, and at the same time normal stresses perpendicular

to a are considered to be small in comparison with the stresses tangential to the

surfaces parallel to _. As in the linear theory, this hypothesis leads to an error
of at most t]L in comparison with unity*.

The non-linear theory of shells constructed without such a hypothesis was

given in a tensor formulation in the work by Wei-Tsang Chien ]0.19/ and in a
linear formulation by N.A. Kil'chevskii ] 1.6].

* See the papers by Novozhilov and Finkelstein ]1.1/ and the papers by

Mushtari /1.2/.





Chapter I

THEORY OF SHELL DEFORMATION

S 2. Some Considerations from Differential Geometry*

The Cartesian coordinates x, y, z of a surface without point or line discon-

tinuities can be expressed in terms of independent parameters a 1 and a 2 in the
form

x=/,( .... ,), y=f_(=_,._), .=1,(=,,._), (2.1)

where f_, f2 and f3 are continuous and single-valued functions of a z and a 2.

Let a 1 = a ° = constant. Then equations (2. I) become the parametric equations

of the curve a z = constant which lies on the surface (2.1).

Giving a series of values to the parameter a 2, we obtain on the surface a

family of curves a s = constant on which the parameter fL2 varies. We shall call

these a2-1ines. Similarly the equations a2= constant determine a second family

of curves, the al-lines. With the above hypotheses regarding the functions f2, f2

and f3 only one curve of each family will pass through any point of the surface (2.1).

Therefore every point of the surface can be taken as the intersection of n, and a 2

lines and the position of a point can be specified by the values of a I and a 2. The

parameters _z and a 2 are called curvilinear or Gaussian coordinates of the point

on the surface, and the curves a i = constant are called coordinate lines (or curves)

on the surface.

Assume that i, j, k are unit vectors along the Cartesian coordinate axes and
is the radius vector of a point on the surface (2.1); then

r=_÷ly+**

or, substituting for x, y, z from (2.1),

r= iA + 7f, -I-kf, = 7(=_,==), (2.2)

i. e., the radius vector of a point on the surface can be taken as a function of the

parameters a z and a 2. The expression (2.2) is the vector equation of the surface.

In the following we shall assume that the surface is specified by its vector equation
(2.2). We adopt the following notations for the partial derivatives of r with respect

to the coordinates a z and ¢_2;

- O7 - O7
r,l=_, r,==6- _. (2,3)

From the definition, _,t is the derivative of r with constant a2; therefore,

as _h varies, the vertex of the vector F will describe the curve a 1. Therefore

the vector r 4 is tangent to the curve a I and the vector _,2 tangent to _2. Thus,

r, 1 and r, 2 lie at the given point of the surface, in the tangent plane. These vectors

* In this section geometrical formulas which are essential for what follows are

given, usually without derivations. Details on these matters can be found, for
example, in P.K. Rashevskii's book /1.3/.



are called fundamental coordinate vectors of the sur'ace (Figure I), or simply,

coordinate vectors.

We denote the moduli of coordinate vectors an( their scalar products as

follow s

I_,,l=A,, I_.,_=dz, r_,r-,z=A,/,cosX, (2.4)

where X is the angle between the coordinate lines a I and a 2. The quantities A 1

and X are functions of the coordinates a I and a 2. _[he unit vectors of the curvilinear

coordinates el and e2 are:

- - - - 7,_.e_=.._q_ _ r.,; e, (2.5)
I_,, I Az AI

Figure I

The square of the distance between two infinite_imally near points (x, y, z)

and (x+ dx, y+ dy, z+ dz) is

#s',= _.==+ d_ + dzz= IdTi:

If _ is taken to be a function of a t and a 2we obtain

dr _ r,ldg1-_r,s_=.

Therefore,

ds__ A_=d=_=--}-2AtAj cos xda_d==_ A==4===. (2.6)

The expression on the right-hand side of the equation is called the "first

principal quadratic form of the surface s. This form determines the infinitesimal

lengths, the angle between curves, and the area on t/e surface, i.e., it deter-

mines the intrinsic geometry of the surface.

To calculate the curvature of a curve which lie:_on the surface, we have to

consider a nsecond principal quadratic form" of the _urface. Let /"be a certain

curve on the surface, given by the vectorial equation r = r(s) where s is the arc-

length from a certain origin and _ is the unit tangent to this curve:

'_ _- = -,, _- "1- ,",=_" • (2.7)



According to the Frenet formula, the derivative of this vector is

' (2.8)

where I/_ is th_ curvature of the line /', and v is the unit vector of the principal
normal to this curve.

Substituting for _ from (2.7) in (2.8) we obtain

p Xds /

7.__% ÷_% . (*)

Here and in the following r'_ik (i, k -- 1, 2) are abbreviated expressions of the

second order derivatives of r:

;,,. = _,, = _ - _=,_---;-

Let m be a unit normal to the surface forming a right-handed coordinate

systemwith the fundamental vectors r,1 and r,2 i.e. , the shortest rotation from

r,1 to r,2 takes place anticlockwise, and let q_ be the angle between _ and
(Figure 2).

Figure 2

The vector _ is perpendicular to the coordinate vectors:

where

roT, j=0 (i_l, 2). (2.9)

If both sides of the expression (*) are scalar-multiplied by m, we obtain

cos _ b_d_a* + 2brjd_d% + bz, dB, 2 (2.10)

p d._s '

&,_bu=mr-,t, {i, k=l, 2). (2.11)

The expression

b_ld=j I ÷ 2bl=dalda= "1- b_d=_ =

is called the second principal quadratic form of the surface and the quantities bik



arethecoefficientsoftheform. Upon differentiatil g (2.9) with respect to a k and

taking into account (2.1 I) we obtain for the coefficie _ts bik the expressions

bz_--m,zr,_--m,_r,z (i, k:=l, 2), (2.12)

where

m,_---_0m/0a_ i_l, 2. (2.13)

Thus, one can see from (2.10) that the curvature of a curve on the surface

depends on the ratio d_zt:da 2 i. e., on the sense of the curve. From (2.10) one can,

in particular, obtain the curvature of the normal section. For this section,

and _ are either parallel (q_= 0) or have opposite d:rections ((_= n). Since a

tplanet curve always leaves its tangent in the direct on of vector _ and one takes

its outer normal as the positive normal to the surfac _, we have _ = _.

Thus we obtain from (2.10) the curvature 1JR of the normal section

1 _._,, + 2b,,_a,_, + b_ (2.14)

From this, by taking a 2 = const and a_ = cons_., we obtain the curvatures of

the coordinate lines a z and a2:

k,,= 6_. _-- _ (2.15)
A2 ' -- -- _i_ •

Through every point of the surface there are tcvo normal sections at which

1/R reaches a maximum and a minimum. These are catled principal sections for

the particular point. The directions of the tangents lying in these sections are

called principal directions, and the corresponding curvatures

I__=_ and 1._1___1
RmJt RI Rmi. R=

are called principal curvatures of the surface. The principal directions are per-

pendicular to one another. The curves for which th _ tangents coincide at every

point with the principal direction are called the line_ of curvature of the surface.

Through each point of the surface there pass two ml tually orthogonai lines of

curvature. If one takes these as coordinate lines, 1hen X = 9{F.

The expansion formulae for the second order ierivatives of the radius vector
with respect to the axes of,the principal trthedron {F, 1, _,2, _) are:

Z,_= F_Z, +/_,_2 + _bl_ (i, _:= 1, 2), (2.16)

where _ are Christoffel_s symbols of the second kind,

AIF_ _-A_,z -}- .All i ctg %, As Tz .sin }_ _ AI,'2 - (As cos :()._ ,

A_jasinx_A%l--(AzcoSx),_ , Ai_n_l_k_Ai.l_--cos_Aa,i , (2.17)

.4_sin _-_,, = ._'n, (i 9/: _).

Let us calculate the derivatives of the unit re, tors of the orthogonal coordi-

nates (_ = 90°). If one substitutes in (2.18) the expression (2.5) for r,_ and uses

the formulas (2.17), one obtains, for X = 90°

_,_ = - e_.4,.=- A,.a=_,,_: .,I,e,.2=_,_._ - .4,.4=/_,_,T.1,_ (2.18)
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_ where

_.,7= - #_IA.4. (2.19)

Here and in the following the symbol 1,2 shows that the formulas which are not
fully written down derive from the permutation of indices 1, 2.

For the derivatives of the unit vector m we have

_,,_= -- bi_, - b;_,, .

where bik are the expansion coefficients

Al bl I sln i X _ At ( ki= cos }[ -- k_1 ),

A=b,.Jtdnt X = Al (k, cos X -- kt_).

(2.20)

(2.21)

For orthogonal coordinates we obtain from (2.19) and (2.20):

2 --

With respect to the lines of curvature the latter formulas are:

(2.22)

" Ri --_, b,'=bp=O. (2.23)

The coefficients of the first and second quadratic form of the surface are

not independent but satisfy the differential relations of Gauss and Codazzi. The

Gauss formula expresses the total curvature of the surface

1 -- hub n -- b_2

RIR z (A1A_sta X) g

(2.24)

in terms of the coefficients of the first principal quadratic form of the surface and its
derivatives:

b_11--bllb_ 8_ "1 _ A_'J'--c°exAi'tt 8 AL2--c°sxAzl+_ • (2.25)
AIA = sin X o_IOn= c_al A_ sin X _az Aa sin Z

the two Codazzi relations are, in an arbitrary coordinate system

_,,.,- ,,,, +,,, (rl, - d,) - _,,rl,+ d,b. = 0_. (2.25)

where f_ is given by (2.17).

In case of orthogonal coordinates the expressions (2.25) and (2.26) simplify as
follow s:

(2.27)

Let us consider curvilinear coordinates in a three-dimensional space. The

position of a point P can be specified by the curvilinear coordinates a_ and a 2 on

a surface _, and a third coordinate z perpendicular to this surface. Let us take,

as before, _ as the radius vector of a point M on the surface from an origin 0.

Let _ be the radius vector, taken from the same origin,of a point P in space so

that, as seen in Figure 3, one obtains

=_( .... ,)+z_(_ .... ), (2.28)

where m is the unit normal to the surface at the particular point.
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Figure 3

Differentiating with respect to a i and z we obtain the coordinate vectors at

the point P

$,t -- r,t "t- mgz, p,, _ O-p/Oz-- m (i = l, 2).

Substituting for m,i from (2.20) we obtain, in general coordinates

_,,= r,_(1 - _]z) - _,_,_z;

By substituting for m, l

gonal coordinates:

fore

(2.29)

from (2.22) we find the. coordinate vectors in ortho-

_,, --A_(] +_.z) ;, + A,k,.ff,;
P',a'-- As(l +k22z) "iz+Ajknz-i_. (2.30)

For the lines of curvature the latter assume tae form

In all these formulae r, i

p# -_ 7,,t(l -{-k.z). (2.31)

are the coordinate v _ctors of the surface o; there-

-- w
p,jm-- O. (2.32)

We set

_Jffi=p,tp,, (i, k--l, 2)

We denote the unit vectors of orthogonal coordinates by e_

Zf=p,,/Hi, H,r = tp,,I-

Substituting for P,l from (2.30) we obtain

.H',e'lt= A, (i + k,tz) e, + A=k ,z¢=;

H,i,, = A, (l + k,,z) i, + A,k _z;,,

(2.33)

(2.34}

where el and e2 are the unit vectors of the orthogonvl coordinates on the surface a.

12



From this we obtain the formulae for Lame's coefficients H i

or, by expanding_these expressions in a power series in z and neglecting the

squares and higher powers of the quantities kuz we obtain:

HI_ Aj(1-4-k.z). (2.35)

In this approximation we obtain, for the unit vector of the orthogonal coor-

dinates,

el'='- el .q-kt=ze_; e2" _ e-=+ kl=ze,. (2.36)

In case of non-orthogonal coordinates a I and a 2 the square of the differential

arc-length of a curve in space is:

ds: : I d'PJ_ : g, ,d_,: --{-2g,zd:,d,ze .+ g2:d:z' -t- dzz. (2.3 7)

Substituting for Q,i from (2.29) we obtain the formulas

go--A?(l+2k.z) i_1,2, (2.38)

g]_ _ AIA2 (cos X'_-2k_2z). (2.39)

For the coordinate vectors of orthogonal coordinates (in case of an orthogonal

system) we write

Hz lp,, mi : -- F,#'i], H, Jp,2ml : p,;H,,

IP-,,P,_J= _H,H,, (2.40)

and for the coordinate vectors of the surface

A,p,,m'-] = -- _,A,. A, Ir,,m]= r,,A,,

17,,7,,I= _,A,A,. (2.41)

From this we obtain for the unit vectors ez, e2, and m the formulas

let m']_ -- e_, [e-_m-] t_,, [e_ ea[ = m, (2.42)

13



S 3. Deformations of a SJrface

Let o be an undeformed surface referred to orthogonal coordinates. We as o

sume that the deformation of the points of this surface causes a displacement char-

acterized by the vector v = v (al, az). The surface a turns into a new surface a*

which will be called the deformed surface. We shall specify a point of this surface

by the same values of the parameters a 1 and o 2 by which we specified the corres-

ponding point on the undeformed surface, but in general the curvilinear coordinates
of a* will not be orthogonal. The radius vector _* of a point on the surface a*

will be

r" _r-i-_, (3.1)

where r is the radius vector of the point before deformation.

In the following, all quantities referring to th_ deformed surface will be

marked with an asterisk. The projections of the displacement vector _ on the

(orthogonal) directions e D e z, and m are:

_t--_¢_, us--_e-j, w:_.m--. (3.2)

Consequently, the displacement vector may be expressed as

_-- u1¢1 -b =_= + win. (3.3)

Here u I and uz are tangential displacements and w is the normal displacement.

By differentiating (3.1) with respect to a i and using the formulas (2.18) and

(2.22) for the coordinate vectors on o*, we obtain

where

_,;= a, {(l + e,,)_-,+ e,J, + ._},

e. =± _+_0_ _ +k. w.
.4, _ Av'., ._,

etz _At b_ AtA. _ .----

.t_,- ]-" _" -- k.st --k:=_
Aa,,

(3.4)

(3.5)

The first principal quadratic form of the surf_ce o* has the general form

(&")= = (A,'_ d=? "F 2A,'A=* cos x'd,,a,= -[- (Af'p dq'. (3.6)

Here

•_,'--I;,71. (3,7)

A,*.4,*cosx'-- _ _, (3.8)

where _* is the angle between the coordinate lines on _*. The differentials of the

14



arc-lengths of coordinate lines before deformation are:

(ds),_A_,, (&h=A_J. (3.9)

After deformation they will be respectively

(da'), -- A,*_,, (d.e), --A,'_-,. (3.10)

Introducing (3.4) in (3.7) and (3.8) we obtain the formulas for the coefficients

of the first quadratic form of o* ;

(At') =_ All(1 + 2,u), (At*) _ --AtI(i +2¢n), (3.11)

cos X*= 2eta (1 + 2in) -_0 (1 + 2ttt) -'l. , (3.12)

where we have introduced the new notations:

$

#,-1

The relative elongations eI and e2 in the direction of the coordinate lines may

be determined according to (3.9) and (3.10) by the formulas:

• ,=(At'--At):Al=(t+2t, t)l"--lz,lt---_slt+...1.__. (3.14)

If y is the change of the angle (initially 90°) between the coordinate lines, then by

neglecting the squares of quantities small in comparison with unity, we have:

cos X" _ cos (90° -- _r)= sin "r_'f _ 2,_=(1 -- _u -- ,n). (3.15)

It may be seen from (3.14) and (3.15) that the quantities _tt and e22characterize

the relative elongations in the direction of the coordinate lines, y being the shear

angle between them.

Let us consider the case of small deformations, i.e., of deformations for

which one may neglect the elongations and shear in comparison with unity.

According to (3.14) and (3.15) we have:

Thus, for small deformations the quantities all are the relative elongations in

the direction of the lines a Iand a2, and the quantity 2s12is the shear angle be-
tween them. We thus have:

A_AI(I+ szl), A_A2(I+E2_

The quantities _ii and 2_i2 characterize the change in the dimensions of an ele-

ment of the tangent plane. Hence, they are called the components of the tangential

deformation of the surface.

In order to derive the expression of the components of the bending deformation

of the surface, we express the unit vector of the normal to the deformed surface in

terms of the displacement. The normal _* to the deformed surface a* can be

specified by the following formulas:

15



Hereandin the following we ignore the elon/_ation and shear in comparison
with unity in calculating the bending of the middle mrface. If one substitutes for

r*, i from (3.4) and uses the vector products (2.42 one obtains for small deforma-
tions

_* : e,E, + _..E:+ _t'_, (3.16)

where the following new notations have been introdaced:

El = (1 + e.) (I --i-e22) -- e 2e_. (3.17)

To clarify the meaningof the quantities eik, _'_l and Ef, we form the scalar

products of (3.4).... and (3.16) with ei and _a. Then, for small deformations, taking

the equalities ere 1 = 1, ele2= 0, elm= 0 into consideration we obtain

costT.._e,)=t+ea, cos(r_e,)_ei, (.'#-k), i,k=l, 2;

cosiT.:r_)=_,, cos(_*Y,)--E,, c_s(n**m)=e,

Therefore, the parameters etl_, ('_t, Et, E3 characte.-ize the angles of rotation of the
coordinate vectors r,l and _ in the process of deft rmation. For the unit vectors

e*l and e* 2 of the coordinates of the deformed m;ddle surface o* we obtain the

following formulas for small deformations (3.4):

;_*= (1 + e,,);, + e,_., + ®,;n,
(3.18)

e-_*-- e,,e, + (l +e_,)e:+ _r,i,

sinc e

_,* = _;/A,* -- _.;/a,(_+ ,,,) _. £;/a,.

Let us express the unit vectors of the coordil ates of the undeformed shell

el and _ in terms of the unit vectors _*l and _*. By vectorial multiplication
of (3.16) and (3.18) by ex we obtain:

m* et ---_El, el*el _ 1 + ett, e_*et _ e.,t.

Setting here

L- G,* + p;.*+ T;',

we obtain the coefficients

since the vectors e*l and e*2 are mutually orthog )nal if we neglect the elongation

and shear in comparison with unity; furthermore, tccording to the Kirchhoff-Love

hypothesis e i-j_ m*. We thus obtain the inverse r, lations

By setting

L = (1 + e,,) L* + e.e-," + t',Tn*.

e-, e,,L* + (I + e,,)_',* + :',F_*.
(3.19)
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we obtain for the coefficients

al = el*r/l, I}_ R e_ _f/ip TI = m._m;

by substituting for e*i and m* from (3.16) and (3.18) we find

Hence we obtain

m = e,**, +e%*_, + T_*E_. (3.20)

* Differentiating (3.16) with respect to a i and using the relations (2.18) and (2.22),

we obtain for the derivatives of ei and _,i the formulas:

where

_,*j =A (_,C _- _,_, + _E_) (3.21)

The coefficients of the second principal quadratic form of the deformed surface

are expressed by formulas similar to (2.12):

b;; .... .-'F-;= T_;r:_'. (3.22)

By substituting for m*,i from (3.21) and for _*,i from (3.4) we obtain*, since

the trihedron e I e 2 m is orthogonal

k_l = (1 + e,,) Ei. + e,.El. + .Jtf_.
(3.23)

To simplify these formulas we note that the parameters elk, ink, Ek, E3 satisfy

the following algebraic identities:

Et (I + eu) + eLsE,+ E,-[ = 0. E, (l + e=) + ,,,E,+ f,,_----0. (3.24)

which follow from the equation Y_fl _* = 0 on substituting for _*,l and m* from formulas

(3.4) and (3.16).

To calculate the changes in curvature we neglect the elongations and shear

in comparison with unity, so that the following identities are valid

(I +e,,)E_--,,E,_.I +e_ _.2,

(3.25)

which can easily be verified by replacing E l and E_ by their expressions (3.17)

and then using the formulas (3.13). On substituting (3.21) in (3.23) we obtain

A,k'tt= (l + eu) E,._+ e_tE,.,+ _,E.o, + A_ 1[(I+ e,,)E_ --e,,E,}A,._+

+ A, {(I+ e,,)E, - _,E,}k,,+ (e,,E_---,E,)A,kr..:

* For general coordinates these formulas were obtained in ]0.7] and for the

lines of curvature in the monograph of V.V. Novozhilov /0.15]. They

were given earlier in a slightly different form by Kh. M. Mushtarl ]1.4].
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*further replacing the brackets by their approxima'_e expressions from (3.25) and by
again neglecting the elongation and shear in comparison with unity, we have

+/rttA1 (1 + e_) -- A_k_r

By differentiating the first identity of (3.24), we find:

(1 "+" e'tl ) El,, + elVES, t + mlE_, t : -- Etch. -- Eae_a,_ -- Eaw_._.

This gives for the coefficients of the second principal quadratic form the

expressions

-- A_kl_e_l 1 2,

-a,k ..... [_. *

Let us now consider the components of the bending deformation. The quan-
tlUes e_k describe the change in the dimensions of an element of the surface in

deformation. These are, however, insufficient to define the form of the element

owing to the possibility of twisting; we shall characterize the "twist _ of the

element by changes in the curvature of the coordinate lines a t rand a 2 in the process
of deformation (henceforth denoted by ×t_a_d xt2) and by changes of the torsion

of the surface. ×_2. The latter occurs through twlzting of the coordinate lines in
the tangent plane of the surface.

Therefore, we take the following quantities t_ be the components of the bend-

ing deformation:
I 1 1 1 *

L, [ and 1--- -_-_are the curvatures of th. coordinate lines before andwhere

after deformation. For smaller deformations

l _ b_l , 1 _'_*

On substituting these expressions into (3.27) and using (3.26), one obtains the

formulas for the parameters of curvature

I f_ Oe_t__,= Oct, _ O'_,'X *'t OA,

I

_,,= k._e. - _,_e,. - _, (E, o_,,._ ,.._= o-,X--O,, "r'-._ ,_,, -1-_-,O,,)-r" (3.29)

whereby x12 = x21, although there are different expressions for these correspond-

ing to the different expressions for b*12and b*21.

When deriving formulas (3.29), the quantitle_ btkEJn were neglected because

they are small in comparison with unity.

The components of deformation of the surfac,_ elk and Xik satisfy three differ-

ential relations which are called the conditions of continuity [conditions of compa-
tability]. They are obtained by subtracting the Ga_ss-Codazzi relations for the

undeformed surface from those for the deformed m_rface. If one substitutes the

following into Gauss's formula (2.25) for the deformed surface,
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cosx*_'-_2t12, sinx*_-_l, A_*=_(l+=ti); (3.30)

- sJnx*X.;_--_.T_2=x==, b_'h=btk--A_A,x_,. (3.31)

and then subtracts from it the formula (2.27) for the undeformed surface, one

obtains, for small deformations*

= AIA= (Y._2-- x.x== -- x.h== -- x==k. _- 2xl=k==).

This is one of the conditions of continuity. We obtain two other conditions

if we subtract from Codazzirs relations for a deformed surface

the corresponding conditions (2.27, second equation) for the undeformed surface.

For this purpose, we first calculate Christoffel_s symbols r_ for the deformed

surface. From (2.17) we obtain, using (3.30), t_e expressions

A=A, _=,= A=At. t + A,A_lt. I t- 2A_==_41._.

(3.34)

"A_ /_z= = -- A A_ 2 + 2A_ (A====). l + '== (A, =). 2-- (Al_,,). = 1.-_2.

If we substitute (3.31) and (3.34) in (3.33) and use (2.27), two further con-

ditions of continuity are obtained:

OA,,,, OA.,...... _ .... _-_Jcd% d=,

f . a.4, _. A=a(,,- ,_)1__ (3.35)
+ ('" + _") L_"' _ ---_=, _

It should be noted that in deriving (3.32), the products of the first derivatives of

the elongations and shears were neglected in comparison with the second deriva-

tives of the same. If on differentiating with respect to any coordinate, the de-

formations do not increase, products like £iJ,k ' _,t are small quantities of

second order. But if the derivatives grow _* times with respect to the deformation,

as it happens in the zone of the edge effect, then:

where _.pis the maximum relative elongation in the limit of proportionality; the

symbol _ shows that the compared quantities are of the same order of magnitude.
The second derivatives will then be of order

whereas the products of the derivatives are

Therefore, one can neglect the products of the derivatives in this case as well. #r

* The derivation of these relations in general coordinates is given in a paper by

K.Z. Galimov ]1.5/. See also N.A. Alumyae ]0.1].
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$ 4. Deformations of s Shell

We shall refer the middle surface a of the undeformed shell to the orthogonal

coordinates a z and a z. We specify the position of any point P of the shell by the

same Gaussian coordinates al and a2 and by the coordinate z perpendicular to the

middle surface. Then the radius vector of the point P is:

_: ;+m., (4.l)

where r is the radius vector of a point on the middle surface, m the unit normal

to the plane.

The coordinate vectors of the,point P on the mdeformed shell given by

formulas (2.30), and Lame's coefficients H i by (2.35).

The square of the distance between two infinitesinally near points on the
surface a=. parallel to the surface a is:

(ds')2=/-/,'d4,'4-/'/,'_,'-}-dz'. (4.2)

As before, we fix the position of the point P. of the deformed shell by the

Gaussian coordinates a I and a 2 on the deformed middle surface o* and by the

coordinate z* perpendicular to it. For small deformations one can assume z*-_ z

because that is equivalent to neglecting the elongation in comparison with unity:

z* =z(l +,.)=z,

where _33 is the relative elongation in the dlrection of the normal _.

The radius vector of the point P. is:

p,= p -}-% (4.3)

where u is the displacement vector of the point P. In the following, the quantities

relating directly to the deformed shell or to its micdle surface a* will be marked

by an asterisk. The differential arc-length at the pcint P. on the deformed shell is

given by the general formula (2.37):

(d_)' == _,,d=_ -t"-2&;,d=,d=,-J--g_zd ,z=_.(_dz '[ (4.4)

Here

and 01" and 02" are the coordinate vectors of the p)int P. of the deformed shell
which can be expressed by formulas similar to (2.2'0:

)', = ,?,(l - ;l=)- ,--,;_z
(4.6)

Here m* is the normal to the surface a*, r,_ and r*2 are coordinate vectors on a*,
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and b*_ are quantities which are calculated for the deformed surface according
to formulas (2.21). Let ud note that in deriving these expressions, as well as in

the following, the Kirchhoff-Love hypothesis is used (see _ 1).

The arc-lengths of the coordinate lines at height z above the middle surface
are before deformation:

(d_)== -- H,d=,, (ds')= = H_=2. (4.7)

and after deformation, according to (4.4):

(4.8)

Hence, the relative elongations _ and _2 in the direction of the coordinate

linesa lands 2at the point P(a_ a 2, z) are given by

• ,'- (=e),-(,_), .,'- (_.),-(_},
(de3, ' (ds'h '

or, substituting from (4.7) and (4.8), by

",'-- (V-_. -- H,):" .... "-- (V-_. -- "): ",. (4.9)

The cosine of the angle k_between 0,*,and 0,'2is given by

co,£ = _%_'; g;'
1 :,1-17,1

(4.10)

where g*ik are given by approximate formulas of the type (2.38) for the deformed

shell:

- (a;)' (l + 2zr,A e;,-- A;A;(cosx*+2z_;,),
k;,= -- b_/A;A;= -- b;dA,A,

(4.11)

The angle of shear between the coordinate lines a Iand _at height z from the
o z

undeformed middle surface is denoted by 2s_ i.e., we set 2st2=90 -- _,. Then,

according to (4.10), we have:

_os£ = _t. 2._,- g;,/ V-g,,_ •

Since for small deformations sin 2_2_ 2_2 one obtains, considering (4.9):

2e,_ = g;d/-/,/-/, 0 + "_)0 + "_) _'e;d H'u'. (4.12)

Thus 2s_2 = cos X• is the angle of shear and the quantities s_ ,; and e_2 determine
• & . .

the deformation of a surface element of a* which zs at a distance z from the middle

surface o and is parallel to it. The angles of shear s_3 and _ are zero, because by

Kirchhoff's hypothesis _ m* = 0.

We shall express the components of deformation by the characteristics of the

deformation of the middle surface.

When calculating the relative elongations of the shell, one can neglect the

angle of shear between the coordinate lines in comparison with unity, because we
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assume that the deformations are small. Therefo-'e, we obtain by formulas (4.11):

-r tk.z. (4.13)

So that according to (4.9) by neglecting the elongations and the quantities kijz in
comparison with unity, we obtain

z_z_ A_ + A_k.z -- Ai (I + k.z) e,, + z_L. (4.14)
Aj(I + ki_,z )

Similarly, according to (4.11) and (4.12), and assuming that cos X* = 2ez_ ,k**2 = k12+x12,
we obtain the angle of shear between the coordinate lines at the surface o :

_,2_"_ +z (/z,=-b x,_. (4.15)

And thus, for small deformations of a thin stell, the first approximation

formulas of Love (4.14) and (4.15) (see /0.11]) are also valid for finite displace-
ments.

To end this chapter, let us consider the displacements within the shell.
displacement vector is:

p=_*- _

The

By substituting here _* = _* + _* z and O = r+ mz, we obtain:

U=v+ = (_*--_), (4.16)

where _ = _* - _ is the displacement vector of point _ of the middle surface of the
shell.

The unit vectors of the coordinates_ and _ are given by (2.36). Denoting

the projections of the displacement vectors along the coordinates by UI, U_ and
W z, we obtain:

u,,= 7,,._. UI=';,, T/ W':=7,,._.

Substituting here for U from (4.16) and fore_ and e_ from (2.36):

U," = u, + :_. e-_+ *.,z (u,,+ z,;" e-';)-= _ + : (_'* _ + _,u=),

U,X_ul-_-z(m*el+ l_=u,), Wx=w- =(m*m--l).

Further on substituting for _** from (3. 16) in the above expressions, we obtain

U,'=u, +=(E_+ k,_). g,_=u2+_(5=+ _,u,), W'=gp+z(_a- 1). (4.17)

Thus the Kirchhoff-Love hypothesis leads to a linear distribution of displacements
along the thickness of the shell. _r
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Chapter II

EQUILIBRIUM EQUATIONS OF THE THEORY OF THIN SHELLS

FOR SMALL DEFORMATIONS AND ARBITRARY DEFLECTIONS*

§ 5. Equilibrium Equations of the Theory of Elasticity
in Orthogonsd Curvilinear Coordinates

The orthogonal curvilinear coordinates a I and a2will no longer be orthogonal
after deformation. In the following, when deriving the static relations we shall as-

sume that they are orthogonal by neglecting shear, small in comparison with unity.

But we shall not neglect the elongations {in comparison with unity) because in

many cases the derivatives of the elongations may be of the same order of magnitude

as the twists eikand "_t°f the coordinate axes during deformation. Neglecting this
fact can lead, as will be shown in Chapter V, to substantial errors.

Let us derive the conditions of equilibrium for an elementary parallelepiped,

cut out of the deformed shell and bounded by the planes ax= const and ai+ dai= const,
z = const and z + dz = const.

Here the ai have the same numerical values as before the deformation. We

assume that F is the body force vector per unit volume of the deformed shell, and

Pl and P2 the stress vectors, applied to the surfaces ai = const and z = const

of the deformed parallelepiped per unit area.

The deformed parallelepiped is in equilibrium as a result of the following:

i. Stresses on the faces aI = const and ai+ ai= const:

--p_ddandpjd_'+(ptdd)a daj {i=1,2),

where daiis the area of the face o4 = const (the comma in front of the i signifies

partial differentiation with respect to ai );

2. Stresses on the faces z = const and z + dz = const:

-,_,d-, and _d_'+(;,d_).,d_.

where cicZis the area of the face z = const, and (p.do'_,, = _ (pzdoZ)/ az;

3. The body force Fd_, where d{} is the volume of the element under
consideration.

When the shell element under consideration is in equilibrium, the geometrical

* The contents of SS 5-7 for general coordinates were given in a tensorial form

in A.I. Lurie's article /11.1]. The Eulerian and Lagrangian formulations of

the theory of finite deformations in general coordinates can be found in articles
by K. Z. Galimov, /11.2] and /11.3/. The theory of finite deformations of

continuous media is also dealt with in the papers /0.21/, ]11.4/, ]11.7/,
etc.
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sum of all these forces is equal to zero:

(3, _=')., d=t + (p, do' )., d=, + Cp'd_),, dz + F _ = 0.

The areas of the faces of the deformed element in orthogonal coordinates

are respectively:

daL = H2* d=tdz, do_ = Ht*daldz, a_=_ H_*H=*d=td==,

and its volume isd[} = Hi* H2* _xtd_dz, where accc rding to (2.35), Hi* m Ai* (1 + ki_ z).

For a thin shell the quantities ki_ z can be r eglected, so that we can set:

HI"_=,At* _At(1 +,u) (ira 1, 2).

Hence,

d_A=*datdz; da== At*d=ldz;

d*Z = At *A=* d*t d,m; dt2 = At_'At" d_td=_dz. (5.1)

If we substitute these expressions in the above condition of equilibrium and drop

the common factor dalda_dz, we obtain the vector equation of equilibrium of the

deformed parallelepiped:

_, At*)., + (p, A,*)., + G, A,*At" _ + F_,*A," -- 0. (5.2)

For equilibrium, it is necessary that the resultant moment of all forces acting on

the parallelepiped should vanish. Let us derive the vector equation of the moments.

We denote by _* the radius vector of the vertex P* (at, a z, z) of the parallelepiped;

_l_., b'_O* and 8T_t_, increments that have to be added to _* to determine the radii
vectors of the other vertices of the parallelepiped, that is, the displacements

from the point P* to the other vertices

v_*= _d,,,, a%*-_,_,,,, rp-.= _*d.-,

Here _* is the unit vector of the z* axis of the Jeformed shell. If we take the mo-

ment of the stresses acting on the faces a I = corst and al+da2= const with respect
to the center of the parallelepiped, we obtain

Ti- vP,"_ - --£_o'1+ _ lv_,;_,_' + (_,,o').,a=,l= (P:;_,[do'd=,.

Here, the fourth order quantities in the coordinate differentials were neglected.

The moments of the stresses acting on the other faces will be [0,_2] d°tdn2
and [_* _=] daZdz; the moment of body force wii be a fourth order infinitesimal,

which we neglect. Thus, the equation of the monents of the surface forces, after

cancelling daldazdz, will be

_,;P,I A; + I_,;_,l AT + [_*p_!At*A,* = 0. (5.3)

The stress vectors Pi and Pz can be resolved a,ong the coordinate axes of the
deformed shell*

* Although z* _ z0 z* will sometimes enter instead of z.

the segment z is taken in the direction of m.

Then it means that
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are expressed as follows (Figure 4):

6 z

OIJ_ 1

Figure 4

._,= o,,7_.+ o,_.+_,,_., (5.5)

Let us prove that the components of the stresses are symmetrical:

_,,=a2,,. a,,=a_,, a,,=a_,. (5.6)

On substituting (5.5) in (5.3) we obtain:

le_._'l (o1,- o,,)+ [_"m*l(o,,- o,,)+ I_m*l (o_- =,:)= o,

from which equations (5.6) follow, since the eoefficnents of the vector products

must vanish.
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§6. Forces and Moments. Reduction of Stresses and

External Forces to the Middle Surface of the Deformed Shell

In order to derive the static relations of the theory of shells, let us take an

element of the deformed shell which is cut out by the normal cross-sectlons

a i = const, a i ÷da i = const and bounded by the surfaces z = _ t/2 (Figure 5).

i @a J_

Figure 5

Here a i are the Gausslan coordinates on the deformed middle surface of the

shell and z the coordinate perpendicular to this surface. The same coordinates ai

and z give the position of the point P* ( a I, a 2 , z) of the shell, but the unit vectors

of the coordinates of the shell will be e| and m*. We denote by KI and K2 the

resultants, (per unit length of the coordinates al and a2 of the middle surface) of

all forces which act upon the surfaces a 2 = cons' and aI= const. K I and K2 are

the internal forces in the shell. To calculate these, let us assume Pl and P2 to

be the stresses acting on strips of the faces al = const and a2 = const. As the

areas of the strips (of height dz) at the distance z from the middle surface are

respectivelyA 2. da 2dz andA1* da Idz. the f_rces on the strips of the faces

a I = const and a 2 = const will be _ IA.2 dazdz ald 5zA* ida _z respectively.

Therefore, the resultants of all forces whch are acting the faces a t = const

and a2 = const of the element of the shell are

t12 tl2

fp, A,"d.,dz and f):,A,',_o,,z.
--£_2 -112

Dividing by the arc-lengths A 2 *d a2and A 1 *da _of the coordinate lines a I and a 2

on the middle surface a*, we obtain:

O: T2

-t12 . t12

(6.1)

Let us calculate the principal moments of internal forces about a point on the de-

formed middle surface. For the force acttngon a ,_trip of the face al = const about apoint

on the middle surface it is the vector product [rnZ p_,4z*d_dzl, as the radius vector of

this force is _*z. The principal moment of all internal forces acting on the face
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% = const is the integral f {_*z, ptA1* dat]dz. Dividing this by the arc-length A_ * da 2
we obtain: -_2

t12

-t t

Thus, the principal moments M1 and M2 of the internal forces on the faces a 1 =const

end a 2 = const per unit length of the coordinate lines at and rt2 on the middle

surface e* are:

if2 trl

 .=ftwz, jdz
-- sit - t/_

(6.2)

Thus, the internal forces acting on the lateral faces at = const of an element

of the shell are statically equivalent to the force Ki and the principal moment Mi

acting on the coordinate lines a i = const on the deformed middle surface.

The external forces acting on the shell are also reduced to the middle surface.

Letfi(+) and __) be the external loads per unit area which act on the boundary
surlaces z = t]'2 and z = --t/2, and F the body force, per unit volume of the shell.

Let us find the resulting principal force and principal moment of the external

forces. Since

the external loads on the surfaces z = _= t]2, per unit area of the middle surface,

are

_, ,-,12 (6.3)
• -- -- If2

The resultant of the body forces acting on the element of the shell is

t/2 t12

f Fdo*dz-: f FAt*A**datd%dz.

--It2 --el2

On reduction to unit area of the middle surface, this becomes

t_

_dz.

-t/2

Adding this expression to (6.3) we obtain the vector:

z= ft* -_ ftl2X = p,, .... _ ., Fdz.
(6.4)

-lrz

Therefore, the vector X is the principal force of all given external forces

-reduced to unit area of the middle surface. X is called the external force acting

on the shell.

The moments of the surface forces p(÷_At*A2*da_d_.and -pf-_At*A2*d_dat about

any point of the element of the shell will be

rm* t/2, _(÷)Az* Ai* de, d==] and [--_t*tl2, p(_)A,*A=* dcqd==].

Reducing their sum to unit area of the middle surface, we obtain:
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The moment of the body force per unit area of the middle surface is

:rz

Therefore, the principal moment of all the forces which act upon the element of
the shell reduced to unit area of the middle surface is

¢/2

We term _ the external moment acting on the shell, Thus the external forces

acting on the element of the shell are statically equivalent to the principal force
and the principal moment L. The point of application of these vectors can be

any point on the middle surface of the element.

Let us express the forces and the moments in terms of the stress components.

If we introduct (5.5) in (6.1) and (6.2), we obtain

ttz

k, = ( !o,._f"+ o,._["q o,._*) a..

t/2

N,---f [_**, o,,?_'+_ _;i'ldz
-rp

Substituting for e_" in the above from formulas of type (2.36)

where e_ are the unit vectors of the orthogonal coordinates on the deformed surface,

we obtain
¢12 =12 M

. Cz -tl_ -tg
t12 tlZ

= ;;1f°,,.,= +

We proceed similarly with vectors K2 and M2 Taking into account the expression

for vector products

t_,,_q=-_, [_;,--'1=_; _;_1=7.*, (6.7)

we can write the force and moment vectors in t_e following form:

K, =e; T;,-_-_; T;= k_* N;, (6.8)

-_,=7, r;, + _ r;,:-;*_v;;
M, _ M;, --_;M;=, M, = _ M;, --;; M;.,. (6.9)

In the above we have introduced the following n_)tations:

112 :12 112

_lj2 --t!2 --112

(i, _ = _,_)
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0RIGINAL P?.7:_ k_

OF POOR QUALITY

Since the vectors TiT _ + Ti_*_ lie in the tangent plane* of the deformed mlddle

surface, the forces T_k are called tangential forces: T*I_, T'22 and T'12, T'21

are respectively the normal and the tangential forces acting on the cross sections

a I = const, and _2 = const; N* are shearing forces in the surfaces of intersection

a i = const, M*tl and M'22 are bending moments and M'12 and M*2t are twisting

moments. Their positive directions are shown in Figure 6.

N" N:

M_ M,

Figure 6

The external forces and moments may be written in terms of the projections

of the external stresses of= a2zand omandthe body forces FI, F2, F 3 in the
directions of the unit vectors of the coordinates of the shell:

F= F,;,"+ F, }_" + r, _*.
(6.11)

If these expressions are introduced into (6.4) and (6.5), we obtain:

_= x;_+ x;_;+ x;_*,
Z= L;_;_ L;_,

(6.12)

(6.13)

where we introduced the following notations:

d_ #{?

-_12 -tlz
,I_ (6.14)

L_ ZO #--t]2

--tbl

Here Xi* and L_ are respectivelythe projections of the external force and moment

in the directions of the unit vectors of the deformed middle surface. X3* is the

projection of the external force on the normal to this surface.

§ 7. Equilibrium Equations for the Shell in Orthogonal
Curvllinear Coordinates

If we multiply the vector equation of equilibrium of a three-dimensional

body (5.2) by dz and integrate with respect to the thickness of the shell from

--t]2 to +t]2 we obtain:

(A;_,).,+ ( ,K,),+ A;A;_ = 0, (7.Z)

where Kl and X can be expressed by (6,1) and (6.4). Further, we take the vector product

of the equation (5.2) with m* z and integrate over the thickness of the shell:

t_

f[m z{(p,A,),,+ (_,A;), + GIn;A;),,+ kA;A;}]_z= 0
-fi=

* [The word tangential [kasatePnyi) used by the author may sometime= mean 'osculating' - Translator]

(*)
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Since

thus, on introducing the left hand side of these equations in (*) and taking into

account the equation of moments (5.3) we obtain:

(A;9¢., + (A;_,J,, + [7.'R,lA; + [;'_¢_,]At+ _ATA;= O, (7.2)

where Ml and L can be expressed by (6.2) and (6.5).

Thus, the equations of equilibrium (5.2) ;rod (5.3) for an element of the shell

considered as a three dimensional body are replaced by equations of equilibrium

(7.1) and (7.2) of an element of the deformed m_ddle surface of the shell. In these

equations the required vectors Ki and M_ depend only on the two variables a 1 and

a2; therefore, our problem is now only a two dimensional one instead of a three-
dimensional one.

Let us express the vector equations of equilibrium (7.1) and (7.2) in scalar

form. For this purpose we substitute for Kl from (6.8) and for Xi from (6.12) in

(7.1) and in the equation obtained we replace-e_ and m_ by their expressions
(2.18) and (2.22) for the deformed surface. Then we equate the coefficients of

ei* and m* to zero.

If, in considering the equilibrium of the shell element, we can neglect the

displacement as small compared with unity, we can use the formulas for orthogonal
coordinates:

- _*A;A;_:_, l, 2-_ (7.3)

_:_= A,*(kfl_*+ k_,*, q : l, 2).

With the help of these we obtain:

(A'2T*,)., -b (A*_T*2,).2.4-T*__A*t.2-- T_zA_., Jr-A_A, (N,*k;, "l-

-'1- N,*le*_-p X,*) = O;

(A;r;_).,+ (A;r_,).,+ T;,A;.,- r; a;.,+ A,A, (N;*;, +
+ N;*;_+X;_ =_0; (7.4)

(A,_;), + (A,_;_.,-- (r;,,;, + r;_ + *;_r;, +
"-b k*_,T*_,-- X;) A, 1_ = O.

Thus, the vector equation (7.1) is equiwlent to the three scalar ones (7.4).

In order to write the vector equation of x_oments (7. 2) in expanded form, we

insert M_and L as given by (6.9) and (6.13). If we consider (6.8) we obtain in a

similar fashion the scalar equations:
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A * *( ,M,)., -b (A,M=).,+ _2A,., - M;,A,, ÷

q-AsA,(_, -- N_,)-- 0 l, _--_" (7.5)

Here we assumed A* t _ A t , because in calculating the variations of curvature

we neglected not only the shear but also the elongation as small (compared with
unity).

The sixth equation of equilibrium (7.6 is identically satisfied within the as-

sumed limits of accuracy. This ensures that_the tangential stresses are conjugate:

o12 = o2t. Thus, for six unknown forces T*tk and N_' and four unknown moments

M*ik, we have a system of five differential equations (7.4) and (7.5).

In order to ensure that the tangential stresses are conjugate with respect to

the thickness of the shell otz= azl, a_= 0=2, one must add one more differential

equation to the six equations of equilibrium, which in orthogonal coordinates will
be as follows /0.8/:

2

t: r. (r;,k_ - r;,k,;) - a (_,, M;,) = 0 (7.7)

The equations of equilibrium (7.1) and (7.2) hold also for a shell of varying

thickness which is symmetrical about the middle surface and for which the equations
of the boundary surfaces are as follows:

z=/(,_=,), z=-l(_l=, )

The principal forces and moments are defined by the equations

! f

S 8. Boundary Conditions

Let us consider first the static boundary conditions.

The locus of the boundary points of the middle surface of a deformed open

shell shall be called the boundary contour C*. The ruled surface _* which is

formed by all the normals from C* to the middle surface will be called the

boundary section of the shell. We denote by n* the unit normal to C* in the plane

tangent to the middle surface o* ; _* is the unit tangent to the contour C* ; "

m* is the unit vector of the normal to a* at the points of the contour C*. We

con._sider the trihedron {H* ,-_*, m*l to be equilateral (Figure 7). We further denote

by K n and _I n the elastic force and the elastic moment at the contour, per unit

length of the contour C*, and by T*, S*, N*, H* and G* their projections on the
axes of trihedron:

R = _*r* + 7*s*+ 7.*m*; (8. l)
IH, = n*H* -b _*0". (8.2)
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Mn °

Figure 7

Here T* and S* are a normal and an tangential force, N* a shearing force, G*

and H* are bending and twisting moments at the contour. It is not difficult to expres_

these quantities in terms of components of [principal] forces and moments. Actually,

using formulas from the theory of elasticity which express the stress on an inclined

plane with normal K* in terms of the stresses on areas perpendicular to the axes of

the orthogonal coordinates and taking into account that in our case _*_* = 0, we

obtain:

/(. = K,.;-[-/(= ,;, (8.3)

where n* i is the projection of the normal n* along the unit vectors e*.

Let us express n* l in terms of projection_ it* of the vector _i* along _,*.

is an element of arc of the contour C* then we have, by definition

_. = a,. =7; _d_+_ _ =7,o,¢ + ;,%_.
ds* ' ds* ' as*

Here we have used (2.41).

If ds*

Since F,i* = Ai*ei*, it follows that

da I

When one further resolves n* in the directions e_, then

(8.4)

Now taking (8.4) into account we obtain the rela:ions

_*=_*= aJ*' .,*=-:,*=-A, _--;. (8.5)

We denote the unit vectors of the undeformed c¢ ntour C of the shell by E and

and their projections along el by t I and n i . Le • us prove that for small deformations,

_* ! _, _* = _ although nj*_ ni, Ti*_zi. H ds is an element of arc of the contour C,

then it follows from (8.5) that:

a=l d= z

tl=At_, nt_-A=_- , n =--A= ¢-_,

but when neglecting elongations, small _ compared to unity, it is clear that Ai* _ A i

and ds* = ds.

Thus for small deformations, the following relations are valid:
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.,' _.,. ,,' _,: (8.6)

., =.,.., +;_..,, .*--e,% +7..._ * (8.7)

We have the formula

._,, = Mm,* -'f" ,_,n: (8.8)

for determining the moment at the contour. If we substitute in (8.3) and (8.8) the

expressions (6.8) and (6.9) for Ki and _I i we obtain

7

_, = E ('s:,r:,_-,*+_,.N,.)_:,
2

_ = Z I_,*_,̀ _1M;,n:= E (_=*M;,- _-,'M3).,*
i,k 1--1

(8.9)

(8.10)

(8.1)

Let us find the normal, tangential, and shear forces at the contour. By

T'=K,.n _, S*_K,'_*, .V_ =K,.m *,

or, considering (8. 9),

2

r*=ET:,.:,t, _, S*=_r:,n:.:, N'=ZN,*n,*, (8.11)

L_ i,k i=1

where _*_-*e-:. Multiplying (8,2) by ¥* and n*, we obtain the followlng expres-

sions for the bending and twisting moments at the contour:

If for M,,

G'*= M,.*'. H* = M,.n'.

one substitutes here from (8.10) and uses (8.5). one obtains:

O" = Z Ira*, e-k*l A_,,n,*_=* = E M;,n,*n,*,
i, k _, ll

H* -Z t_,*7,*1MSn,*_*_ - E:,M:_,,*',,".
l,k i,k

(8.12)

Thus, integrating over the thickness of the shell, we have replaced the stress-

es acting on the contour of a thin shell by three equivalent forces T*, S*, N*, and

two moments G* and H* per unit length of the contour of the shell (based on Saint-

Venant's principle). So it seems that there should be five static boundary conditions

at the contour of the shell; these were formulated for the first time by Poisson:

r*=_, s*=._, N*=P, a*=_, H*=_,

where the right-hand sides are the forces and moments given at the contour. How-

ever, it was shown by Kirchhoff and later by Thomson and Tait that the number of

static boundary conditions may be reduced to four. They proceeded from the as-

sumption that the actual distribution of the stresses at the boundary which gives

the twisting moment is of no great importance. Therefore the twisting moment

at the contour of a thin shell may be replaced by a distributed force of the type of

0t/'_* per unit length of the contour C*. Thereby a certain redistribution of the
I}S*

stresses near the boundaries of the shell is admitted, but, according to Saint-

Venant's principle, this replacement has an effect only in the immediate neighbor-

hood of the boundary of the shell.
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Figure 8

Let us consider a portion of the contour C* in the neighborhood of the point

C o . We shall replace it by a broken line consisting of a great number of equal

segments (Figure B). The length of each segment of the broken llne may be assumed

equal (to a degree of accuracy of infinitesimals of higher order) to the length of the

subtended arc (c,c2= CaC,= d_*._ = c_,); the unit vectors of the segment and of the

tangent to the point C O coincide in the limit.

Let us place the points Di and D 2 half-way between the points CI, Co, and

C o , C 2, so that D zD 2 --ds*. Let furthermore H* _* be the vector of the twisting

moment at the point D j, where _* is the normal tc the contour C* at the relevant

point (the direction of the vector _* is perpendlcular to the plane of the figure,

taken towards the reader}.

The resultant twisting moment H* _* ds$ may be replaced, on the part

C I C o of the contour, by a couple (- H*_*, + t_*_*), parallel to the normal _* to
the middle surface at the point DI (parallel to O_ D, ). In fact, the moment of

that couple with respect to the point D 1 is:

[g*ds*, //*_*] = [_*, m*J H*_s* = -t*_*as*,

where P_s*--c--oo_is the arm of the couple.

In the same manner the vector of the twistin_ moment in the adjacent portion

C0C 2 may be replaced by a couple

applied at C o and C 2 respectively, and parallel to the normal _* to the middle

surface at the point D2 (parallel to O1D2).

As a result of the transformation of the twist ng moment, two forces are applied

at the point Co :

/ -, d#/*_* is.)"H*_* and - _,u*_ +

Their geometrical sum is ---_,--ds*. Hence the t_ isting moment per uni_tlength

of the contour is statically equivalent to a force of a linear density _*m*

In this manner, the sum of the force per unit Length Kn and of the twisting

moment Mn at the contour of the shell is statically ,,quivalent to the force
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4) = K. - _M.;____. {8.13)
aa*

and to the bending moment:

o*t _1MT,n,°n_*.
j.j (8.14)

If the contour has the corners A and B, then in addition to the distributed force

on the contour -- a_____* localized forces will appear at the relevant points:

(--H*,_*)Aand (n'_*)_.

Therefore the tw_i_stingmoment H* _* is statically equivalent to a distributed

force of the type #/_m* and to two forces (--/'P_)A and (/-/*nT*)s acting at the

corner points. _**

The vectorial relatlon (8.13) enables one to express the static boundary condl-

lions in any system of coordinates. We shad now consider this in an orthogonal

system of coordinates. Let il_be the vector of the external load applied to the con-

tour C* of the deformed sheD, referred to unit length along this contour, and

• B

Figure 9

G be the external bending moment, applied to the contour, also per unit length of

the contour. Then the vector expressions of the static boundary conditions will
be:

4)_ K_ dH*_,* (8.15)
as*

_,_ M_',n,*n**, (8.16)
I.A

where _-n may be calculated from (8.9) and H* from (8.12). Let us now express
(8.15) in scalar form. If (hi* and (b_are the projections of the contour load on the

axes e_and m* then

_ 4)_*Tx* "b' _)2*e," -{- dp,*_'. (8.17)

Substituting this expression in (8.15) and taking into account (8.9), we find:

,,,,'_,"+ ,,,,'_,*+ *,',_= Z 02,n'_-r+ ,v,._.b," -
J

_ _, c)/'f* _/.p _m* .

_s* ds*
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4r But since according to (2.22)

i

(8.18)

by substituting this expression in the preceding equation and comparing the coeffi-

cients of _ and _-*, we find the scalar form of the boundary conditions:

¢,.=E(r;, .j* + k_p..j.), .,. = u,+.,*+H'.,'- o.:._.,
: (8.19)

_=_,M;,,_*,_" (i, j k=t. 2_.
i, t

Here we can neglect the elongations which are small in comparison with unity,

without affecting the degree of accuracy, assuming n_*z nl, _i*z Ti, ds*z ds; analo-

gously, we can neglect the terms due to bending n the expressions_bi*. Hence, the

boundary conditions may be expressed in their final form as follows:

2 2 :OH*, _= M_,n_nk. (8.20) (8.20)• _'= l'_m, ¢,*= M*n_ - TJ

The ._ctor _ may also be projected on the axes of the trihedron in*, l*, m*t

Hen( iplying scalarly by n*, 7", _* we ,,btain:

_bn* = Tl n* 0$* ' _._" ' ---- --

or, 8.18), and the equations

n_*_* =¥_" = m*Om*iOx* = O,

hi* _ nl, _t* _ rt, d3* _ ds,

t.J i.: (8.21)
0H*

qb3* _ N* -- --,
Os

*, S*, N* are given by (8.11}. If <_ is t_e angle between the positive

n the a_ axis and the vector ¥, we can in.roduce into the boundary conditions

le projections of the vectors ¥ andfi of t_e non-deformed contour of the

,rl: nl_cos_; li=n _ =slnll. "ill" ,(8.22}

n addition to the static boundary condition:, there may also be geometrical

iscellaneous boundary conditions. We sha: 1 list here some possible variants
boundary conditions, and for simplicity w( shall assume them to be homo-

US.

1. A hinged, immovably supported edge: n this case, the following conditions
to be fulfilled at the boundary of the shell:

u_=u_=w=n, 6'=0, (8.23)

re G* is the bending moment at the contour or at its elements.
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2. A hinged edge, free in the normal direction. The following conditions

have to be fulfilled at the boundary:

G*=O, N*--_H*=O, u,=ut=O. (8.24)

3. A free edge:

¢.. = *_. = cp.¢ _ G* = O. (8.25)

4. In the case of a clamped edge, the condition u 1 = u2 = w = 0 must be ful-

filled and the angle or rotation at the contour has to be zero flU* = 0. By substi-

tuting for _* from (3.16) and puttingn = e lnl + e2 n2we obtain n lEl+ n2E2 = 0.
That condition will be fulfilled if

ow
-- -= n_o_/Ald_. + n2dwlA=d=2 = 0
an

at the contour. Hence, in the case of clamped edges, and of a large deflection, the

following ordinary boundary conditions of the linear theory have to be fulfilled:

u1=",=_= _ _0. (8.26)
a.

Besides these main cases of fixed edges, there may be cases of elastically fixed

edges. Some examples of this may he found in the hook by S.P. Timoshenko ]0.28]

In solving problems of stability of thin shells and other problems with several

successive states of stress, it is sometimes useful to start from the equations of

equilibrium with respect to the undeformed state of the shell, i. e., with respect to

the system of coordinates of the undeformed middle surface*. The differential

equations of equilibrium (7.5) that are satisfied by the moments and the shearing

forces do not differ from the corresponding equations of the linear theory of shells.

But the first three equations of equilibrium (7.4) differ substantially from the corre-

sponding equations of the linear theory, because the former contain the coefficients

of the second principal quadratic form of the deformed surface, and the projections

of the external force on the coordinate axes after deformation. Therefore, we

shall now project the vector equation of e_uilibrium (7.1) on the coordinate axes of
the undeformed shell. Let X_. X H and X 3 be the projections of the external forces

on the axes

._ _-. x;;, + x_$2 + x;_, (8.27)

where _ 1 and _ 2 are the unit vectors of the coordinates at the undeformed middle

surface and _ is the normal to this surface. This decomposition will be convenient

if the external forces are given in the system of coordinates for the undeformed
state. We shall resolve the vectors of the internal forces in the same directions

(8.28)

where T H are the tangential forces in the system of coordinates of the undeformed

surface, and N_ are shearing forces normal to that surface, whereas T_I _t THt .

We shall substitute (8.27) and (8.28) into the vector equation of equilibrium (7.1).

We can assume A_ _ Ai, because the rotation of coordinate axes was taken into
account. Therefore, using the formulas (2.18) and (2.22} for differentiation of the
unit vectors we find:

(A,T_,).,-}-(A,T;,),.+ T?2A,.,-- T_2az.,+

-_ A,A=(lzt,NI"f lt,,A/_+XT)=O 1,2;
4----

(a,,v,'),, + (A,,V;).= -- A,_ [_,,._, + _,, r;, +

+ k:,(T_,+ T;,)--._] =0 (8.29)

* See the author's paper 10.71.
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* In the above,- mentioned equations k jj refer t _ the undeformed middle surface
of the shell.

Let us express the forces T_ and NIH in terzas of the forces T*
Acoording to the definition

Substituting here for K l from (6.8) we find

Since

m m* _t,IlelS_---ltttj, _ez*_elm, tl$C*--_Ew, ---- _-_

and N_*.

therefore

Let us derive the static boundary conditions.

After substituting for Ko from (8.8) the expression for the force acting on the
contour (8.15) will be

¢ -----Ktnl + K_-- ds (8.31)

Here, n t, n_, ds relate to the undeformed contour ¢wing to the smallness of the

deformation. Let _v and _ be the projections of tl e external load on the contour

on the coordinate lines of the undeformed surface, _nd _H the projection on the
normal to this surface. Then we have

= ¢?7_ + ¢_7, + ,_;= KT,, + _- _'_*_* .
#s

from which we obtain

According to (8.18)

+ _n_- e__ - ,,H"_- ,

" - -, _H* -
-_; -)=N,., +

alp - ate*
+ _,,, - e, _- - mn*-T;-_

The quantity H* k* _ t _ xu k*.. may be neglected in c( mpartson with the other

terms of the expression forCP_. In fact, if the rotations are of the order of mag-

nitude unity, then according to (8.30). N H will be of _he same order of magnitude
- d_n* •

as the membrane forces, being large in comparison with _-_--s _ . If the rotations

-- dH*

are small, _ will be small in comparison with _-_-s because ]_3=1.
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Therefore,thestaticboundaryconditions are:

0//" . all*
4_=rpin,+ _,.=-++-_-, ++----rhn,+ r_n+--+. +---_. (8.32)

.... _+= M;'v,_,,,.'P3-- _nt + Nzn= - E+ +s '

i,k

where the twisting moment H* is to be introduced from (8.12).

Let T H, S H, N H be respectively the projections of the vector K on the normal

B, the tangent { to the contour C, and the normal _ to the undeform_d middle

surface:

r"=-_.=(_,.,+,_=,,d;', s'=_,,;, N"=+_,._.

Substituting for Ki from (8.28) we find:

l,k i,k i

Since

we have for the scalar products

_* = E.,n,+ _,n,, T_+ = _,-., + E,_,+ (8.34)

Projecting the vector (8.31) along the unit vectors n, z, m, and using (8.33) and

(8.34), we find the boundary conditions in another form

OH* ,1_ S" -- all"_'_.=r"--(e,",+e.n,)-_ s , = (e,':,'l-e,',)-_- s ' (8.35)

where _nH, qbH tI)_ are respectively the projections of the contour load on the
normal and the tangent to the undeformed contour of the shell and on the normal

to the undeformed middle surface. $k
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ChapterII_

ELASTICITY RELATIONS. VARIATIONAL EQUATIONS OF
THE NON-LINEAR THEORY OF SHELLS

S 9. Relations between Stresses, Moments, and

Deformations of the Middle Surface

The principal geometrical and static equations of the theory of thin shells,

which have been obtained in Chapters I and II, were derived under the assumption of

small deformations and arbitrary bending; the,_'efore, to determine the state of

stress of the shell, we shall use Hooke's linear law for a homogenous and isotropic
body:

0,, _ _ 22 I+_ :_1-_

E E =, ____ (9.1)

where E is the modulus of elasticity and v is Poisson's ratio.

The above-mentioned relations are, however, not sufficient to determine the

relation between forces, moments, and the deft rmations of the middle surface. In

addition, one should also know the law of the variation of the deformation _k or of
the stress along the thickness of the shell.

The e_ were determined in the analysis cf deformations by means of the geo-

metrical hypothesis of Kirchhoff and Love, ass_ming that _3 = e_3 = 0. Neglecting

the shear _3 and _3 is equivalent to neglecting of the tangential stresses o1= and

a_., and therefore of the shearing forces N_ and N_. For thin shells, although
oz= and o_ are small in comparison with the st_'esses a23, o12, and the correspond-

ing shearing forces are small in comparison with the tangential ones, they cannot

be neglected, because that would be in contradi.:tion with the conditions of equilib-

rium inside the shell and at its edge. Therefore, the shearing forces N_ and N_
which depend on aZz and oh have to be determir ed from the equations of the
moments (7.5).

For the determination of the stress comp,,nents all, o12 , and a22 we shall
rely on the further assumption of the Kirchhoff-Love hypothesis (see § I). There-

fore, we shall assume that the normal stress a on surfaces parallel to the mid-
dle surface is negligibly small in comparison w,th the other stresses. The stress

o may then be determined from the third equa:ion of equilibrium for a three-

dimensional body, by integrating it with respec: to z. From the existing solutions

of particular problems it may be concluded that ozz_ Et ep]R, i.e., they may be

neglected when considering small deformations of a thin shell. One can use this

fact for the determination of the relative elonga:ion e_3 in direction of the normal

to the middle surface. Assuming o= = 0, we fild from (9.1) the following expres-

sions for e_3 and 0:

, = I--_ ( '[, -}- '_z). (9.2),_= _(,,,+,_); 0= ,--,
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By introducing this expression for _ into (9. I) we obtain Hookers law for shells:

£ £

E

.... _ "?..

The tangential stresses or= and _z= may be determined on the basis of the known

shearing forces N_ and N* 2.

The relations (9.3) enable one to express the tangential forces and the moments

in terms of the deformation of the surface. Substituting in these the expressions

for deformation from the first approximation formulae (4.14) we find

a1,=1_--:_ [_,,_-vz2_+z(x_I-{-,x=_)]; a,2-= _- (*t=+z_,z); (9.4)

E

Introducing these expressions in the formulas (6.10) for the forces and moments and

integrating over the thickness of the shell from --t/2 to t/2, we obtain Love's

formulas in the first approximation /0. II/:

r;,_ =k2,.+_.), T;,,= _, _K(1 --.),,,, r;_=_(_.+ _,,),
(9.5)

hi;, = D (=,, + _,), M_ = A_;, = D (1 -: q ....

M_ = D(*=--_-**,,),

where K = Et[(1-v 2) is the tensile-compressional and D= Et 3/12(1--v z) the flexural

rigidity of the shell.

From (9.5) we obtain the inverse relations:

_,,=K'(r; , --,r;_). ,,, = K' (Th -- ,r,,>, _,== _' U + _)C_;

.... D' (M;,- ,_M;2).... D' (N/;2, -- ,M:,),

.... D' (l +,) _¢.,

1 D' = 12/Et _.
, where K'_ -_t '

(9.6)

Formulas (9.5) represent the simplest variants of elasticity relations and

coincide with the corresponding formulas of the theory of plates. The order of

magnitude of the error is t/R in comparison with unity, i. e., it corresponds to the

error of the initial hypotheses. The above-mentioned formulas satisfy the sixth

equation of equilibrium (7.6) with the same degree of accuracy. By adding to the

right-hand sides of (9.5) secondary terms which contain the error in Kirchhoff's

hypothesis, theycan be made to satisfy the equation (7.6) exactly and also the re-

quirements of the general theorems of the theory of elasticity. But without devia-
ting from that hypothesis it is impossible to make them more precise.

For a thin shell (t_eaR) the relations (9.6) are sufficiently precise. For a

shelI of medium thickness (t_R P_), for which the error inKirchhoffts hypothsis
is of the order Y_ /III. 1/, it may he necessary to make them more precise.

After the addition of secondary terms the general relations of the theory of shells

become symmetric, being more useful for theoretical research. The elasticity

relations with additional secondary terms have been dealt with in the monographs
by V.V. Novozhilov /0.15/ andA. L. Gol'denvaizer ]0.8]. When using the com-

ponents of bending deformation in the form (3.31), taking finite displacements into
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account, the type of elasticity relation given in S 12 of the present chapter is the

most convenient variant. The problems of non-linear elaBticity relations and of
strain hardening have been briefly considered in _he paper /III. 3/.
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§ 10. Principle of Virtual Displacements. Deformation Energy
of the Shell. The Ritz Method

Let us consider a shell in equilibrium under action of the body force F and

the stresses Pz • Let 8u. z, au_, 8_ be infinitesimal variations of the elongations,

according to the constraints imposed on the shell. Then the work done the external

forces acting on the shell, in the variation of elongations; will be:

=
(g} (u_

where d_--A*l_J_da_da2dz is an element of volume of the shell, and I-[ a surface com-
posed of the boundary surfaces z = t]2 and z = --t/2, and the surface 3" of the

boundary section of the shell. According to (4.16) the variation of the displacement
u is:

8_ =_ + zS_*, (I0.2}

where 5_ is the variation of the displacement vector of the points of the middle

surface and _* the variation of the normalto a*. Letus express the virtual work

of the external forces in terms of the deformation energy of the shell. The stress

vector Pv acting on an area which has a normal _ may be expressed in terms of the

stress vectors Pl, P2 and Pz which act on the areas taken on the coordinate surfaces

et 1 = const, a 2 = const, and z = const. From the theory of elasticity we have the
for mula

p, = p, cos_, ,,,)+ 72cos_, ,,_)+ _, cos_, z).

_k Tral,

(Gaus

Introducing this into (10.1) we obtain

÷_, cog&,,,) +,_, cos(_-,_)}_,7_.

,ming the surface integral into a volume integral by the following formula

strogr.adskii theorem in orthogonal curvilinear coordinates)

{nj

\-- _t- + _* _7---]
,j _" j

where f 1, f2' fz are arbitrary vectors gives, with the further assumptions

H 3 = 1, H I_A_ l, H 2 _A_, the result

,.= f f f + +
le)

or, by using the equation of equilibrium (5.2),

,,=f f +

+ LA'IA*2(_ _)., } a=_a,,az. ( 10. 3 )

43



* This is precisely the expression for the principle of virtual displacements for a

shell considered as a three-dimensional body. The triple integral expresses the

work done by the deformation of the shell. We shall express the external forces and

internal stresses, which appear in the variatior_ equation (10.3), in terms of forces

and moments in the same manner as we did in Chapter II for deriving the equations

of equilibrium. First we shall transform the right-hand side of the equation (10.3).

As, according to (10.2)

we may write (10.3) as follows:

u= {;,_'_;;, . o;_+," 4-

lu)

To transform the integrand in the right-hand side of this equation, we shall write

the stress-vectors {5.5) as follows

where
pl:qi4-aizrrt ,

p:=,,,--+:.., .- +°:_
a_ A; .4-• A;

Using these expressions and the fact that

p,_ r +_,F, _*_=1, m'_m*=O, _"_'_-_" _'=0.

we obtain

_IA_ _ } t
_m,2 ) " _ • -,4- pz,41A2 bln =-

From this equation, taking into account the exp -essions for the forces in the shell

t12 M2

d2 112

the equation (a) may be transformed into

f f{ <, + +(.:,;-.,',+ +
t¢.l

tin

+ f" t (_'";'aT,+'-_*;'a;' ,,} ,..,.,. (b)
- tla

Here a* is the entire area of the deform{ d middle surface of the shell, which,

owing to the smallness of the deformation, is e. tual to the undeformed area. For a
further transformation of the integrand of expression (b) we note that the moment

vectors _I i given by (6.2),may be written as:

n2 t12

_,,= f =[.:,,*,_],_.= f, la'_,l ..,
-tJ2 -_2

where qi is a vector perpendicular to i_*. Hen:e, multiplying vectorially by _*
and using the formula for the vector triple prod act [_ _':-] ] = _(_ _)- _ (; _). we find
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a12

IF,. -a*l=f --_,a,.
-t2

As a result, the equation (b) becomes

+ _; IM-,.7.'1,._;,. A; l_a, ;" f8_;} ,.,a°,

(10.4)

We shall introduce in this the projections of the torces and moments. Substituting

for K, from {6.8} we obtain

_, *;4 •__,j_- r,, 4 _-_;. {e)

Further, by substituting for _, from (6.9), we find

= ._ a_a; (d)_-- M:,7,, _.;
r,/

We shall adopt the following notations for the scalar products in the right-hand side

of the equation

g 'g=B ,B/a;=a,,rj, {lO.a_

and shall transform the right-hand side of (d).

To that end, we note that the identity

•;;,, ;,1,=, (7, 7.,;,)- .,%,7,

upon substitution of the expressions

2

;_a:.,=A;4 k:,. _;= _,_,.,-:
becomes "-'

2
1

A,A;*D%.

After tal :ng A_,_

equation (d) becomes

2 4A_A_

_7-- M;_;__':. 44 ",, <, M,,"
,_ I,i \ s_l /

Introducing the right-hand sides of this equation and of equation (e) into

(10.4) we obtain

u=ff,_'a, ,ao=a,A,a,a°:,

outside the variation sign, because the deformation is small,

where the integrand

(10.6)

(10.7)
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* is the variation of deformation energy of the she]t per unit area of the middle surface.

On using the simplest variant of elasticity relati( ns (9.5) and eliminating the quan-

tities that are of the same order as ki, elk, (10.7) simplifies and becomes, in view

of the equality T_ = T_.

_w:-Z (r:,_,j+ ,_,,',_,,,). (1o.8)
i.1

where Ei and ×ij may be expressed by (3.13) and (3.29). In fact, according to (10.5)
we have J

and by varying the equations

we find

Therefore

Thus, the variation of the deformation ener_ry of the shell is composed of the

variations of the energies of elongation and shear

_w, = T_,a,,. ÷ T;__,._:+ 2r;_a,,, (lO.9)

together with the variations of the energies of bending and torsion:

8Wz =/H;, ax. _- A4;, ax,= _- 2,_;2 _.... (10.10)

By introducing the expressions (9.5) for the forces and moments in (10.8) and

integrating the resulting expression over the com;onents of deformation between
the state of zero deformation and the state that ha_ the deformations _ik and xik,

we obtain the expression for the specific work of ( eformations of the shell,

2 W = K l(,,, + ,,,)' -- 2 (l -- v) (,,, ,,: -- ,b)j + (10.11)

-F D I(_,,q- ,,,)'-- 2 (I - ,)(_, x,:--x_)l,

where _Lk and ×i_ may be expressed in terms of tFe displacements u1, u z, and w,

according to (3.13) and (3.29). The formula (10.1]) is similar to the formula for

the deformation energy of a plate. Use of this for_tula for a thin shell involves an

error of the order of magnitude t/R in comparisor with unity.

/r We shall now express _A the left-hand side )f (10.3) in terms of the external
forces and moments. Substituting for 8_ from (1¢.2) into (10.1), we obtain:

f
{°_ --t12 --t12

+ _- +,., 1,

where H is the surface composed of the boundary ;;urfaces ]'](+} and ]'[(_) with the
areal elements

dill÷) _,'A,*A:,* d'h d%,, dill-) _ A:*A_* da_ da_.
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The stress vectors on these surfaces are Pv = Pz and Pv = --P: respectively. Further-
more, the surface /] includes the surface _ of the boundary section of the shell,

with the areal element d_ . The stress vector at the point (aI, a r z) of this
section is:

where nz are the projections of the vector normal to >_ on the directions of the

unit vectors _i *z of the deformed shell at the distance z from the middle surface o*.

In the notations adopted above, we obtain for _A the following equation:

//I(r;I (i-e= 1,2

)/
-m ]l ,_.,

Furthermore, according to formulas of the type (8. 5), the projections of the normal

vectors to _ at the points z = 0 and z = z will be written as

da z dal

,, z = H * do= ------ Hd ao, (,)

where ds z is an element of the arc of intersection of X and the surface parallel to

the middle surface at a distance z from it. Evidently, an element of the area

is dY = dsZdz. Therefore, using the equations (*) we find that niZdX = nl* ds* dz.
Thus,

_,,.dZ=(p--_./+=,--.,,,")._Z= (;. ,,,_-+ F."=*),"* d.

With this, and using (6.4) and (8.8), we may write the previous expression

for _A as follows: _A j'I',X_;+ _,,,,*)d, + j
I¢) c*

z12

C* -tl*_

where do = AIA2datda2; C is the contour of the non-deformed shell; ds is an
element of arc of this contour (because of the small deformation); the vector Y is

t12

-t12

We can find Y in the following manner. Let the tangential and normal components of

be Y1 and Y3 respectively:Y = Y_l+ Y3 • Multiplying vectorially the external
moment (6.5) by _*, we find for Yltthe expression

Therefore,

In the same manner, by multiplying vectorially the moment at the contour (8.8) by

m*, we obtain
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tr2

-tl2

Taking the above into account, we obtain for bA t_e expression

Here we have stillto transform the integral along the contour. Using the expression

(8.2) for Mr and the formulas [z*, _*] = _*, [_*0 _*] = z*, we obtain:

[_., _*1 = _'- H. ;*.

Furthermore, we have

Using these and the preceding equations we finally obtain:

,A=f f + FL. +

+ f ($8-_+ _ ;*,,;*_d, + _7.,;.,_, J, (lO. is)
c c

where _ is the vector of the external force on th,_ contour, and G* and H are the

external bending and twisting moments at the cont(,ur of the deformed shell.

The surface integral in (10.13) represents the work of the external forces in

infinitesimal variations of the displacements and the work of the external moments

in infinitesimal variations of the twisting angles, since

2

.... __ ._It, m']_m _ = [._e_bn _,

where _ _ _* are the variations of the twisting an gle.

The integral along the contour in (10.13) is essentially the work of the external

forces and of the moments respectively in variattoas of the displacements and of the

twisting angle, because _*_* is the variation of the twisting angle about the tan-
gent to the contour.

The term outside the integral H* m* 5 _ Ic r_presents the work of the localized

contour forces on the displacements. When the edges of the shell are hinged or

clamped, this term vanishes. It also vanishes wh_.n the contour has no singular

points and H* or _ have no discontinuities. If the :ontour of the shell has singular
points, localized forces of the type H* _a* can app_ ar at the singularities as local-
ized reaction forces.

Thus in the non-linear theory of shells, the _ ariational equation of the prin-
ciple of virtual displacements is expressed by the "elation

,A=f f, (10

where SW is given by (10.7) or (10.8) and _A by (1,}.13). It should be noted that

the equation (10.14) is also valid for the general non-linear theory of shells, where
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the displacements and deformations are considered to be arbitrary /lit. 3]. The

variational equation can be interpreted as follows:

Let ) I be the potential deformation energy of the shell and _I its total

variation for isothermal or adiabatic deformation:

Let, furthermore, _ D_ = - 5A be the variation of the potential energy of the load.

Then we can write (10.14) as

b3 _a.9, q 6 ._,_ 0, (10.15)

where ._ is the total potential energy of the system.

Thus, the state of equilibrium of the shell differs from the adjacent geometric-

ally possible states by the fact that for arbitrary virtual infinitesimal displacements

of the system from equilibrium, the increment in total potential energy equals zero.

This is the variational principle of Lagrange. We shall use the term "geometrically

possible states" for any states for which the displacement variations do not disturb

the geometrical constraints imposed on the shell. The following are geometrical

constraints:

1. geometrical boundary conditions;

2. the deformations aik and xik allowed by the variational princip]e of

Lagrange should be continuous deformations satisfying the conditions of continuity

(3.32) and (3.35). These conditions will be fulfilled by expressing the t ik and xlk

in terms of the displacements u i and w according to (3.13) and (3.29).

The increment _A represents in the work of the external forces and moments

the total variation only in some particular cases. Let us consider, for instance,

the case when the external forces may be taken to be independent of the deformations

and the parameters elk are small, i.e., e., _ F Neglecting them as small in

comparison with unity, we obtain from the formulas in § 3:

e_m'=-_ - t_ i, n*6_*=_ -- t_n,where _ = nt _, -_- nl_

(n I is the projection of the external normal on the undeformed contour of the shell).

Then we obtain from (10.13):

<,o.,o>
Here C is that part of the contour where the vector of the contour force _ is given"

C the part where the bending moment is given. The variational equation (10.15)
2

may be written as:

a(3, +- &) = a,_ _ O. (10.17)

This variational equation is also valid for finite bending, provided the edges of the

shell are hinged or clamped and the external forces are conservative:

x, = ?_L ,v, = -eL x, =--_, (Ju, = o}.
_Ul ' _u._
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Therefore, ('10.17) may be interpreted as follows: among all virtual displace-

ments compatible with the geometrical constraints imposed on the shell, only those

can occur in reality for which the potential energy of the system 3 assumes a

stationary value (i.e., _3 = 0).

From the variational equation (I0.14) one _an derive the equations of equilib-

rium (7.4) and (7.5) and also the static boundary conditions (8.15) and (8.16}. Let

us now prove that.

Using (c) and (d) we write (10.4) as follow.,:

da = A: A2 _ d _, d_.

where _A is given by (I0.13).

(10.1s)

Integrating by parts the right-hand side of (10.18) we obtain

C* _ J

for which we used the following formula for transforming the surface integral into

a contour integral:

_2f ,.t d, : _2f _ Ainl dC -- _S 2_ ( f A, A_) j d,, d_z. (10.20,
(,) i C [ (,) i

By substituting for _A from (I0.13) and introducilg the quantities N E given by the
equation

;;A;A;A,-')j--_,*:M-j, k._.}= -,_; )A;.,,;;_. (lO.2OI

we find

+H-..8_!=- IT;,,;._?A;,7 )a_+

(10.20a)

Alter differentiating according to (2.18) and using _e equality _* 5 r_* = 0, the

equation (10.20) becomes the vector equation of m(,ments, equivalent to the two

scalar equations (7.5). Therefore N* are the she_ring forces. Since

i

we obtain, after integrating once more by parts:
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I:*) I (="9 t

f/X.........= -- ,Vi*n,'_m (7'd._+ (?viAl'.4jA ` " _n*)i_ _d_ld_.:

C i ,_*) i

+_A,'A,*2V,',Tj_?(_}d_,_,...
I,j

Introducing this expression in (10.20a) and recalling the notations for the contour

forces (8.9) we obtain the relation

c* , y

o*)

since

Y.X{(4, ;,_ .4,'A:.47-' )j + A,_A_',_',_;,-,; } +
i .y 110.21)

+ _ _S_* At A_" .4,*-').i 7n"= _'(/_i At _ A2'_ A_*-' ).i.

i l

(lO.20b)

It is possible to check the validity of this equation by differentiating both sides by

equations (2,18) for the deformed surface. While deriving (10.13), we proved that:

d (H"m* _ v ) : _o" aH'_n" _ H* 2., _,m _ ;
da._ d4-_

lt_ m+?'t'IC. = f l_TdH_:m*._as_ -- _H,;,_-m_)ds. (10.22)

C*

Using the latter equality, we write the variational equation (10.20b) in the following
for m:

fff dH*_* \ --

In order to obtain the final result, we transform here the contour integral containing

the term $_a*. Since

_,, =a* E- + a* _-*,[,_., ,_* l=a" _- H* _*, (I0.23)

we obtain,

Therefore

substituting for Mn from (8.10),

l_., a.I= EEM;,;,*._'.
,' y

(10.24)

00.25)
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Hence the expression (10.20b) finally becor_es:

- '%+ -a,*-) _v+ ("0, o*

' {_{ (10.26)+ (,_*- H, ) m*_, r_.+ A;K,),+

+ (AIR.4,4-._;a;_} _a,, _, = o.

Here _ is the vector of the external load at the contour, G* and H* are the external

bending and twisting moments, and G* and H* are given by (8.12).

Since the variations of the displacement vector and of the twisting angle are

arbitrary, being independent, the static boundary conditions and the equations of

equilibrium are derived from the variational equation (10.26) under special assump-
tions on their separate variation.

Let us consider those virtual displacements for which the variations of the

displacement vector and of the twisting angle vani3h on the contour: 5_ = 0 and

fi* 5 _* = 0. According to the fundamental theorem of the calculus of variations,we

obtain from (10.26) the vector equation of equilibr.um, because of the arbitrariness

of _ inside the shell. As far as the vector equaton of moments is concerned, it

has no independent role, serving only for the detezmination of the shearing forces.

We obtained this equation in the above-mentioned expression (10.20) while we derived
the equation of variation (10.26).

We shall assume that at the contour 5_ = 0, but that the variation of the twisting
angle is _* _a* _ 0. Then from (10.26) we obtain

J'((7" (;_)_ _/n*.=0 (10.27)

Since _* _* is arbitrary, we obtain static :)oundary condition (8.16), G = G 1.
If the state with 8_ = 0 at the contour is a geometl ically possible state, we can de-

rive from the variational equation (10.26) the vectorial form (8.15) of the static

boundary condition.

Let us note that at the end of the 19th century, the fundamental equations of

the theory of shells were obtained on the basis of _he principle of virtual displace-
ments.

The well-known Ritz approximation method :or determining the strength and

stability of shells is based on the variational print iple for virtual displacements.

The essence of this method is as follows: it was shown above that the varia-

tional equation (10.14) contains the equation of equ.librium and the static boundary

conditions. Therefore by satisfying the variational equation we satisfy the static

conditions inside the shell and at the contour. The higher the degrees of approx-

imation with which the problem is solved, the higl=er the degree of accuracy with

which the static conditions are fulfilled. In this case, the geometrical boundary

conditions are essential, i.e., they should be satisfied in advance. Therefore, in

approximate solutions of actual problems by mean_ of the variational equation (10.14)

we shall use approximation [trial] functions like tke following ones:

n
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whereAk,B_,andC_,areconstantstobedeterminedandfk,_Pk,and_kare
givenfunctionschoseninsuchamannerthatthedisplacementsuj, u2,andwshould
satisfythegeometricalboundaryconditions.Introducingthen(10.28) in (10.14)

and comparing the coefficients of the variations 8Ak, 5Bk, 8C k we obtain a system
of algebraic equations from which we can calculate the constants A k, Bk, and C k.

In general, the derived system of algebraic equations will be non-linear. It will

become linear only in the linear problems of the theory of shells. In actual cases,

besides the difficulties of choosing the trial functions (10.28}, it is very difficult

to solve the non-linear system from a purely algebraic point of view. But in spite

Of that, the Ritz method is the most widely used and the most reliable one. The

convergence of Ritz approximations has been proved in the monograph by
S.G. Mikhlin /III. 4].
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S 11. Equations of the Bubno z-Galerkin Method

The variational equation (10.26) represents the equations of the Bubnov-

Galerkin method in vectorial form. On projecting the vector 5_ along the unit vec-
tors of the coordinates of the deformed shell

_v= e**(_v),+ e**(_v)_+ rn*(,_v),, (11.1)

the expression (10.26) becomes

-e**-) v -t- _u - 0*) ds* +
(11.2)

Here the notations (7.4) t, (7.4)2, (7.4) s represet t the left-hand sides of the equations
of equilibrium (7.4) and in addition

_' _" (8_),=s_+(_* - _)av (t= l, 2), (il.3)(8_), = s_ + _ -_.,,

furthermore, _.5_* is the variation of the twisting angle about the tangent to the
contour. For small deformations this is

n'_:am*= (;;*n, + L'n,) b_*= 7.* ( ,._,'. + n,s;,*) =
= nz(Ez_eu+-E_en+E._,_:) (i1.4)

Hence, when the displacements are small, negle:ting the parameters elk in com-
parison with unity, we find

(11.5)

This is the variational equation of the Bubnov-Ga:erktn method in the system of

coordinates of the deformed shell. In this form, these equations are suited for

theoretical research, because they are related to the energy functional which is

positive for small deformations and finite displacements. Another variant can be

obtained by projecting the vector 5'7 along the uni: vectors of the coordinates of
the undeformed shell:

Projecting the vector equation of equilibrium (7.1 along the same directions we

obtain

dH'm* --. - --+ +
c

+(a.- ¢n.- + (11.7)
+ ff{(8.29,,,,,, + (8.29),,-,+,s.zo,*_ }co,a,, = o.

where the integration is performed over the conto _r and the middle surface of the

undeformed shell; (8.29) 1, (8.29) 2, and (8.29) 3 represent the right-hand sides of the
system (8.29) in the above-mentioned order.
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* Let us now derive an integral relation which will subsequently be needed. Let
us consider the integral

1= fj'{ (,.4),/.+ (7.4,,-/,+ (,.4,,./,},,,d,,,
s

where fl , f2 and f3 are arbitrary functions. Integrating by parts (formula (10.19)
we obtain:

': c.f _,_,(,_,':"_+'_'J') ":"" f f.. [,_,_ (,Y:_'"r"_.,,:o,-x:,,)-xv. ],.. (11.8,

Here we used the identity (10.21) mad set

2

Ar2o=_ Z (7;_,1,+ A" '5/,.

|

o A: =h,-- N ,I: k;,/,. (11.9)

Substituting for NI* from (10.20) we obtain

(AI_I_Aj for i=l; A3__=A _ for i=2),

whence, using (10.19) we find

sst(t )
where we introduced the new notations

S

A_';,, = - e-_*_ ('7,'_',).,. (11.11)

Using this newly-found expression for Ir and taking into account that I = O, we
obtain the integral relation

(X,'/,- ti*_.,l.¢.X_'], ,I_'+ Ic"= T:_g,,+ M_'_,_) el,*. (iI.12)

where I o represents the contour integral

We now transform this contour integral. By scalar multiplication of (10.25) by

_" we obtain

i=]

Hence

C" t.t_ C" t

2

I d/_ ) as* =

C* (." l--I i
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* By introducing the right-hand side of this equalty in the expression for Ic,, we obtain:

cY=/(a','f, + ",'I, + @,°A _'Q.)'* +/_'/, tco' (11.13)

where we introduced the contour forces _" and %* and the bending moment at the

contour _" according to formula (8.19).

This, if the equations of equilibrium are satisfied, the integral relation (11.12) _

is valid for arbitrary functions fi and f3which are sufficiently differentiable. On

assuming fi = ut , f3 = w and neglecting the second and higher powers of the displace-

ments and of their derivatives, the equation (11 12) expresses Clapeyron's theorem

for the non-linear theory of shells. After introtucing (11.9) and (11.11) in the right-

hand side of (11.12) and integrating by parts, ore can obtain the expression:

(11.14)

It may be derived in precisely the same manner as (10.26) from (10.18). By setting

fi = (Sv)t' f3 = (_)3in (11.14) and taking into account the equality_* = --m*_e_
we obtain (11.2). We shall set

_v 0u
h= _-; A =(m*- 7")__ {11.15)da l '

in {11.14) and subtract the result from {11.2). Ve thus obtain the third variant of

the equation of the Bubnov-Galerkin method:

111a6)

where the integration is performed over the co_:tour and the middle surface of the

undeformed shell.

Here we used the notation

':i = _ - _ _i,_ -
J

These quantities are obtained as follows:

from which, taking into account the equations

1

• a

A_* ha,

_-,._ _b_]_ = k;?.j: _,_= _-_,
Al" _i /

we obtain (11.17).

(11.17)
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* The last two variants (11.14) and (11.16) of the equations of the Bubnov-Galerkin

method are suited to actual calculations.

In the equation (11.16) the part with the non-linear terms has been transferred

from the right-hand side to the left-hand side because the external forces are pro-

]ected on the directions of the coordinates of the deformed shell, whereas in equations

(11.2) and (11.7) they were projected on the direction of the coordinates of the un-

deformed shell. Denoting those projections by the respective letters without asterisks,
w e obtain

X,' _ e,*X---- X, (l + e,,) + X=#,= + X_,,

X2 = _ X,e2, -F X, (I + e=) + X_w a ,

Xa*=_"-_= .'QEL+ X2E_ _- X.F_.
(11.18)

We can write similar formulas for the vector _:

• ,* = _e=,4-¢'z(1 t et=)+ m_'s

(11.19)

where _)i and _3 are the projections of the vector of the contour load on the directions
of the coordinates of the undeformed shell. Formulas (11.18) and (11.19) take into
account the twist of the external forces in the deformation.

If in (ii. 16) the contour integral

/c---- @ K.+ d--7_)[.,_.,+e;"_,-,+,'g_.,}+ (_" 6*).,_}ds+(/_- h,_)_.,v)c(11.20)
• i

vanishes, we obtain the following three equations because the variations 8u t and
8w are independent:

• • u

These three equations are called "equations of the Bubnov-Galerkin method" be-

cause these authors /IT/.7] used variational equations of the kind (11.21) for the

first time. As distinct from the Ritz method, expounded in the preceding section,

the ]3ubnov-Galerkin method may be used, under certain conditions, for any differ-

ential equation.

The contour integral (11.20) vanishes, for instance, in the following cases:

I. When the static boundary conditions are fulfilled on the entire contour;

2. when the contour is clamped (J=0, _.,_.=0);

3. when the contour is hinged _-=0 6*=@

4. when the contour is freely supported (_=%*=¢,*=0), or for mixed

boundary conditions, containing the above-mentioned cases.

When solving actual problems by the Bubnov-Galerkin method, one takes the

functions (10.28) as trial functions for u t and w, as in the Ritz method. By tntro
ducing (10.28) in (11.21) we obtain the required number of equations for determining

the constants. The algebraic system obtained will be non-linear; therefore the dif-

ficulties arising in the solution of P non-linear system remain. In general, the

reduction of equation (11.16) to (11.21) is not obligatory, because if the static
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boundary conditions are not exactly fulfilled, one must retain the contour integral

and thereby take into account the work of the non-equillbrlum forces.

The expression (G* --G* )8 _i for the composite state of stress may be simpli-

fied. In fact, by substituting for 8 (,)_ from (11. i 7) we obtain:

2

As for small deformations and for tz_tp

(3"- 0")Y.,_,s=,~ Mt,,,_, - EJ_,_._.,-Et,/_,,,
Ji

the quantities (G* --G* )Z xlk 5u k are negligibly small in comparison with
, l

_i 8u s_Et_Pbus; hence:

2

i i.I

(11.22)

The question of convergence of the Bubno_-Galerkin method for linear problems

was examined in the book by S.G. Mikhlln /III._ / and for non-linear problems of

the theory of shells in the book by I.I. Vorovich /IIl.12/. It should be noted that

the convergence of the method will increase if t:_efunctions (10. 28) satisfy all the

boundary conditions. The convergence is usually examined in each concrete case.

The theoretical foundation of different variatlon_*1 methods and their appllcation to

a series of problems of the linear theory of ela_ticlty has been given In the monograph

by L.S. Leibenzon /HI. 5/. The question of the Interrelations between the different

variational methods has been examined in the book by Ya. A. Pratusevlch /III.6/.

The same book also gives applications of the variational methods to many problems.

The principal types of llnear problems which can be solved by the Bubnov-Galerkin

method are given in Mikhlints book /IIL 4/. Some indications of the application of

this method to the approximate solutlon of non-:inear differential equations are given

in the paper by A. R. Rzhanitsyn /III.7/.
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§ 12. Introduction of Symmetric Components of

Forces and Moments. Stress Functions

Let us introduce new components S U of the tangential forces by the equations

Introducing this in the sixth equation of equilibrium (7.6) we obtain SU = SU, i.e.,

the forces S U are symmetric. We introduce also symmetric components of the

moment Mij by the equations

M_q----M_j+ O#, (1_.2)

where we assumed that

2.',IU = _ ÷ Mi"_; 2Qu = M;#- M_. (12.3)

The quantities Qil =- Qji may be expressed in terms of Si_ and Mi_ after introducing

(12.1) and (12.2) i'nthe additional non-differential relatloh of the type (7.7). This

relation is sufficient, since Qii = 0, Q 12= --Q2r

We shall now write the equation of equilibrium and the static boundary condi-

tions for symmetric components of forces and moments. Introducing (12. I) and

(12.2) in the variational equation (10.5) we find, after the cancellation of similar

terms

where _A may be expressed by (10.13); _ei_ is the variation of the components

of tangential deformation- _k_. = _x r is tilevariation of the components of the• j )

bending deformation. Therefore, the variation of deformation energy for new

forces and moments is also of the kind (10.7) provided T_ 4 T_i , M*j # M_i.

The above-mentioned fact is one of the advantages of the new tensors of

forces and moments. Another advantage is that by introducing these forces and

moments, the sixth equation of equilibrium is identically satisfied.

Taking into account that

and that the equality

Z Z s_wo_rA_"= Z r,s,_ _--;
l _ J

holds for symmetric Sij, the relation (12.4) may also be expressed in the form

,A= {(s__ + M,7.,_'Z,}_'_°_

Further, by substituting for _j for the deformed surface from (2.22) we obtain
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i ] i j 1

We thus find:

where we set

112.5)

Formally, equation (12.5) is identical with (10.1[). Since (10.26) is derived from the -

latter, a similar equation may be analogously obtained from (12.5):

+7] + .... + (1....
¢" •

where we set

2

i, =_÷_,._"+ _-c,; 112.8)
1-1

_.= g,_,*-r,.-_=EZ }fi:, +_'Zo .... 11a.9)
g j

d = p,E M,,.:_,; 11a.lO1
i j

h----- E_ M,/,,,. 112.11)

i j

Here Qi is the analog of the shearing forces connected with the symmetric moments

Mij by equations of the form {10.20)

.A _*A**O, = AC A,* M_' + _'1_, _ii* ('_f*j 7_'At*.4:'.Aj "- '),:. (12.12)

Ii

Thus, the variational equation (12.4) leads to the following equations of equilibrium

for symmetric components of the forces and moJaents

{a,*_,),_- (.-l,*_,).a+ .**A,*2=0; 112.131

,,&*,lTl,')., + (a,',_,'),, + a,* [r ;i.l + a • p_i2_+ A,'a.*/= O, 112.141

,'a,' =e,*M_- ,-;',W,,, &' = ;,*at,, - _;;*,_,_ (12.151

and the static boundary conditions

By replacing T by 'I" and H by l_'I, the boundar? conditions may be obtained in
l) • (scalar form from (8.1§). The scalar form of th equations (12. 131 and (12.14) is

identical with the corresponding equations (7.3), (7.4), and {7.5), after replacing

in the latter T*j by '_i_, N* by Qt , and M_j by _lj' Therefore, using (12.6)
we obtain:

_A**_ 1_--_A,*/i,),+ r_,A,_- r_A_,+ A,A,(_,I¢),+ 112.17)

+ _20. + X,*) = 0 1,2;

IA,QO , + (A,Qg,, + Y_,, _ii* , + X_*= O; (12.18)
_j

(A.A,fu) j + (A.A,I,,)_ + M._A.._ M_A:,_ + &,4.(_, -- O,) =0 L'-_ (12.19)
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* By permutation of the indices I, 2, another form of equations (12.17) and (12.19)

may be obtained.

Since the right-hand side of (12.4) is a total differential, we may write:

c_W OW"
S,j=_,,/ M,:=_, (12.20)

where W is the deformation energy density of the shell. Therefore S.. and M.
' *} i}

may be called the energy components of forces and moments, corresponding to the

components of the deformation of the surface e. and ×,.. The symmetrical forces
*i u

and moments are convenient for theoretical work in which the sixth condition of

equilibrium should be exactly satisfied. The symmetrical components of forces

and moments for any deformation have been examined in the author's work /III. 3/.

It was shown there that for arbitrary deformations, the energy components of forces

and moments may be determined by Castigliano's formulas. For small deformations
they have the usual form:

OW OW

'o=_ , "0 = _-_/ (12.21)

It was further shown in /III. 3] that for any deformations, the energy components of

forces and moments may be expressed by three stress functions instead of the usual

four, provided there are no external surface forces and moments. We shall prove

that for small deformations. If X = L -- 0, the homogeneous equations of equilibrium

(A,'_, -qAJg-,),=o, IA,*_'), + {A,'_,'),+

+ A..[;;,i,l __,"[<_.]-o (12.22)

Here _, and

as follows

may be satisfied by substituting

A.*e, = • .... L'e_= - _' : (12.23)

_,*_,< [;?;*)}=_,; A,*'_,'+[_;,]=- _.,. (12.24)

where _ and _ are two arbitrary vectors:

will be the single independent component of the vector because after multiplying

scalarly (12.24)bym* and taking into account that M_m* = 0 we obtain:

A,*,v,_,_'÷,,: A_*_,= -;,*,_,, (12.26)

_-.i may be found by differentiating (12.25) by means of (2.18) and (2.22)

where we set

from this,

,-:, = A,_ (;,*¢,, + ,-,.¢,, _- ;,'*,). _:, = A," (,_*_,,, ÷

__ _. _ _*v,,-). I.2

(12.2"/)

_'"=_ 0,-:+ A,'A,0-_-, +*;')'

I oh, ), 0A,___**- #,2'_, (12.28)

_" _ _ O_ _.___;:__; I._ (12.29)

o,,. e,,. _,..... may be determined by replacing +,. +,. + by ,,. _,. ,.
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* Introducing (11.27) into (12.26) we find for v, and _:

,,-= % = _;¢- t-k_2._,- _-_÷_ (12.30)

Introducing the vectors gl and M'i in (12.23) and (12.24) according to the
formulas

_,=F,(so+ y.*;_,,);," +a'q,
.1 a

ML"= _*Mu -- _*M,_ Mr'.= tj*M,z -- _'Mn

(12.31)

(12.32)

and equating the coefficients of the unit vectors _.* and m* we find:
i

2 2

s,,+ E M,,*;,=,_,,, s,,+ _:M,,g,= ¢..
i I

2

$ta -P _ M_h u -_ -- ,. .5¢a 4"

O_=,v_. Qa=-%, M_,=w a, Mn=_.

M_j= -- _ -- qf, Mjl = - - g'a "P'P,

From the condition M12 = M21it results that

2¢ _ '¢'_1 - W21, (12.33)

Therefore,

(12.34)

(12.35)

From the latter we obtain S_z, S:: and Q2bY permutation of the indexes 1, 2. The

condition S _z= S2xwill be satisfied after substituting for %, and % according to
(12.28) and (12.29) and then using the Codazzi ccnditions (2.27) for orthogonal

coordinates.

Thus, the vectors of forces and moments _re expressed in terms of one

vector $(#,, _ _} *
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§ 13. The Variational Principle for the State of Stress of the Shell

As shown in § 10, several geometrically possible states may be allowed from

the point of view of the energy functional. Let us construct a functional for which

several statically possible states may be allowed, i.e., states that do not disturb

the condition of equilibrium inside the shell and at the boundary. In the theory of

elasticity, the corresponding variational principle is called Castigliano's principle.

This principle has been worked out for the theory of shells by N.A. Alumyae]III. 2]

and K.Z. Galimov ]III. 3]. Another derivation of Castigliano's variational formula

for homogeneous and laminar cynlindrical shells has been given in the paper by

Wang Ehi-The /III. 8].

Castigliano's variational principle for the three-dimensional problem has
been expounded in its general form in the author's paper ]III. 9]. A mixed variation-

al method for the three-dimensional problem is given in the paper by Reissner
]III. 10]; the application of this principle to the theory of finite deformation of

shells is given in Galimov's paper ]III. 11]. Another variant of the mixed variation-

al method for the theory of shells has been given by N.A. Alumyae in ]III. 2].

In this section we shall describe the variational principle for the state of

stress of the shell (Castigliano's principle of variation in generalized form) for

small deformations and arbitrary bending.

Castigliano's variation formula may be obtained from the energy functional

by using Friedrich's transformation (known from the calculus of variations) as

has been done in ]III. 8/. We shall, however, follow the methods developed in

Jill. 3]. We shall first derive some new relations which will be necessary for the

following development*.

One of these relations will be obtained by assuming in (11.12) that f = v (where

is the displacement vector), i. e., assuming that fi = u*i and f_ = w*. Here u_

and w* are the projections of the displacement vector on the coordinate axes of the

deformed shell. For the quantities % _,, and _,], given by (11.9) and (11.11),
we find:

g,'=-,'. _,j =;i'_. &':,j= --ei* _ (_",_}.'. (13. I)

$--I

where ,n_ and e* b may be expressed by (13.37)*.

The integral relation (11.12} is also valid for the symmetric components of

forces and moments, introduced in § 12, provided that T_) and M*ij are replaced

_'i_ and Mij . Taking into account (13.1} we then obtain from (11.12) the integralby
relation for the symmetrical forces and moments:

* Some relations from the theory of deformations of a surface, which are used

here,are given at the end of the section.
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* !c =

where were taken from (12.6).

(13.2)

Here xil may be expressed by the last of formulas (13.1), and

In this section we shall use the symmetrical components of forces and moments be-

cause in this case Love_s formulas of the type (9.5) are exact in the first approxima-
tion.

Therefore, it is not necessary to choose an:z variant of the elasticity relations

with additional terms depending on parameters of the curvature.

It should be noted that according to (13.42)

-- 2

*=t

and furthermore, by using (13.401 we obtain

'' -_ :_. "-_q_ls'j _,-Aj. _., 0.,s,,¢j=_ s,j(,,; +,_;)= 3- ÷,7 ....
_.j _,; i,$ L!

= s'J";+_-.4,'A;----; o_--_"_,. , (;,i=_, 2)

Taking these into account, we may write the integ3.al equation (13.2) as follows:

• --. .}_. (13.31

This relation holds, therefore, if the conditions of equilibrium (12.17), (12.18),

and (12.19) are fulfilled. In (13.3)_is the vector of the external load at the contour,

_* is the external bending moment at the contour, and H* is the external twisting

moment at the contour. For small displacements (13.3) gives Clapeyron's theorem

for. the linear theory of shells.

In addition to the relation (13.3) we also nee¢ Lagrange's equation of variation

(12.4) for symmetrical components of the forces and moments. Taking (10.13)

into account, we may write this equation as follow ;:

_- _ ,7,.,_ c _--_SS_ ,s,;_,,_ -_ ,H;_,.,,) ,_=. (13.4)
- ,.]

Here
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One more integral relation may be obtained by means of (13.3) and (13o4)o

Let us vary (13.3) with respect to the forces, moments, and displacements, and

subtract (13.4) from the result.

Then, taking {13.5) into account, we obtain:

• i

C i

+.FL2A,.A,.S'_0,,°_:oA -- i}.#a I + _;j I1 -- ram*;# d de,

(13.6)

where U represents the left-hand side of this equation.

Furthermore, we used the equation

_i =--7,7." , 7,'=- -+ .IF-' _'-_ (13.6')

_, =.... fi, ,, * _2.

But, since by (12.21) the variation of the work of deformation is

.t,j E,/

the above equation may be written as follows:

Lj

where W is the work of deformation expressed in terms of forces and moments.

Let us look for the conditions for which the equation of variation (13.7} holds.

For that purpose we have to do the inverse calculation. The variation of the right-
hand side of (13.7) will be :

i,1

+ SU 2A,_A)* rl=, O_j ]-
i,

The form of the expression in the first braces is analogous to the integrand in the

right-handsideof(13.3). Therefore, the expression in braces is equal to -- . +
+_u_,_1 ), where the forces T U have been introduced according to {12.6). A'_ a re-

sult, the right-hand side of (13.7) becomes:

e ij

Here the first integral may be transformed by (11.8) provided I is not zero, because

the displacements vary. We introduce the differential operators
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L=(A,,,_)÷(_._.),+A;_,_-.:,,_.+
÷ A," A," (k;,S Q, + k_l 0_+ I _,') I'-2 {13.9)

Ij

^

After substituting for T* and M_I in {II._) in terms of the variations BTt_
and BMij and assuming that fU= y, fl = u_ and f3 = w*, we obtain

• • iJ

• {13.10)

÷_(_.r_<_,.+ .,._x.. _,.,_'o_+.,._..I_

contour. We now introduce in (13.8) the value of .he double integral

r _e_)_._, + T,/,,u,_a0 and equate the result to the left-hand side of (13.7).

Omitting the details of calculation, (13.7) becomes:
2 --

C4- --
c {13.11)

JJL! \_, A? a_,

Here we took into account that _-_ _=;_,(_*_x_* + .'_*a#*)÷C(_,_.y,, +

Since the forces and moments Tij and Miisatisfy t_e same equatzons of equ211brium

as T_ and M_. we have for @ij and Mi_'lhe integral formula 111.2). Assumir_here

f_--_7,* ='6_ A,--' a_-_ : I' =_'_" 113.121

we obtain:

C 1

{Ill/_0 ÷/H,/ (.,"/ •2;°

Here _, and _' are the variations of the internal forces at the contour, and

and 8H are the variations of the internal bend ng and twisting moments at the

For brevity, we denote here the left-hand side by ] . We obtain the quantities u,.

and _,;o-.I, and_,_from (13.12) according to (ll.9) a_d (11.11):
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Here we introduced the vectors

on* Oo -- _ O; --
al= &'--;-. &--T+va. gO= &" . --_l +_ aO,

(L J=|, 2).

I o_j t-i)_-/ _A..?AC__
A_* O=i Ai* A3"__/ " 0=3_ / 3-,

2

al Ai* f)=i

_j= l _* (--1114 OAi*

By using 113.14) we find:

,Y_,,_,_+Y*:,.j,_=/_M+(_:j+2.; _,,7,-
id r iJ s

- M,j_l.: -_ + A;_, _'_---TU_,"'
#J

where we set

ORIG!%_?L : " ..

OF POOR Q_,_Li_'t

113.14)

(13.15)

o I O(_ ;/) • (-- t) _-j &4i* ,_ __
_: =-_--_*" "-'_=.--_ "a% _ _ajj. (13.16)

Using the differentiation formulas (2.12) and (7.3) for the unit vectors, the previous

equation simplifies to

Z:',_(=,,+ Z_,, _,,)=
,._ • (*)

fJ s

By virtue of the symmetry Sij = Sji we obtain:

Therefore,

s,_%= s,_ _ .., .._ o,--; _-_ _' 1..)

Taking into account (*) and (* * ), (13.13) becomes

o.=ffVts,  ( a oo oodJ/_t L_A.,/. _--;-._ ao+
" _'J rr¢"_ 113.17)

After subtracting (13.17) from 113.11) we finally obtain:

I c + L_,u,* +/4 w" a*, a==+ 6 = 0. (13.18)

Where we set

c 113.191

(13.20)

I
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* where

2 2

¢_,. ¢_, are the projections of the external load along e-_ and _t*; % and ca _ are the

projections of the internal forces along the same directions; G* and H* are the in-
ternal moments at the contour which may be expxessed by (8. 12) and (8. 15).

Let us first consider the ease when the displacements are not varied: _V =0,

i.e., when the integral I 1 vanishes. Equation 113.18) will be satisfied if the varied
state is statically possible and hence the conditions of equilibrium

L,:I,. L,=0, L_=I_ (13.21)

are fulfilled inside the shell and the static boundary conditions*

(13.22)

are fulfilled at the contour.

It should be noted that in deriving the equati3n of equilibrium (13.21) we used

the Gauss-Weingaerten formulas for the deforme_ surface, thus assuming the con-

tinuity of the deformations of the actual state. T_erefore, in the functional (13.7)

only those statically possible states are allowed which do not disturb the conditions

of continuity of the deformations eta and ×ik of the actual state.

The contour integral I C in (13.18) vanishes for other boundary conditions, for
example, if the edge of the shell is hinged or clamped, or for some mixed boundary
conditions.

Let us now consider the case when the displ mements are varied and the

allowable states are statically impossible, i. e., _,here the variation of the forces

and moments disturbs the conditions of equitibriula inside the shell and at the bound-

ary. If in (7.3) we vary not only the unit vectors i'_ and _* but also the coefficients
of the first and second quadratic forms of the unde_ormed surface, we shall find,

according to (13.14)

/ • 0A,*_ _ ..:= ;.._(A,*,;,_.A,*_,_=(-')'-J+';L?_. _-j_-Z___]j--,,(A,.k;j> (13._3)
s=t

With these we obtain the second surface integral of (13.17):

u3-,,5[_A*_ " d__j] --2 d ,_...a
I,f a t.]

Let us indicate the subsequent course of calculations. The terms m_ A-_ _'£)l_,;

have to be integrated by parts by (10.19), and then the equation of moments (12.18)

should be used. After introducing the result in (1_.17) and subtracting from (13.11)

we obtain
2

* The latter condition relates to the localized moment.
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#_ where Ic is given by (13.19) and Pc is the contour integral

C i=t

In addition, we introduced the operators

h ^ tt(.4_._)--r_(A'_iTAz=)+ti[Al_A._'(k_lQ="t-lc_2Oj+X_')] t._. (13.26)LI_ _5(.4_T i)] ff-5(.41; T:() , 4- -.

• A
L3* =_(A_ _ O,).l + _(At_Q:).2 + ¢'_(koT,j) +t, X= _.

Thus, if statically impossible displacements and states of stress are allowed in the

functional (13.7), the expression (13.7) will be valid, provided that

L, =o; L,_=O. L,_=O (inside the region) (13.27)

and that the static boundary conditions or the geometrical boundary conditions (if

the edges of the shell are hinged or clamped) are satisfied.

The variational equations (13.18) or (13.27) are equations of the Bubnov- Galerkin

method. The first one is formally identical with the equations of the linear Bubnov-

Galerkin theory of shells.

We shall derive one more equation which is similar in content to the equation

of the Bubnov-Galerkin method for the elasticity relations and which we shall apply

to the theory of flat shells. We subtract (13. 11) from (13. 6) and obtain
2 2

_ _ _== (13.28)

Here we assume that the equations of equilibrium (13.21) and the static boundary

conditions are satisfied. Therefore, S i and Mij may be replaced in (13.2) by _Si]
and _M . Then the left-hand side in (1_.28) is equal to the double integral

2

(:,,+
and (13.28) will therefore be equivalent to

2

. l '-_ ¢)-_', ._[ ,ij ,ij__ yk. j

i,! $=|

From this, after simple transformations by formulas listed at the end of this

section, we obtain

9 ",l
It is evident from the deduction just outlined that _ij and _ij are here the components

of deformation of the surface expressed in terms of forces and moments, and _]
and × are the same quantities expressed in terms of displacement.

ij

Since the variations 8Sii and 5Mii are arbitrary, the elasticity relations fol-
low from (13.29).
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* The variational equation (13.29) also holds if the allowed states are statically
impossible /IIL 9[.

The functional (13.7) may be obtained from the energy functional by means of

Friedrichs' transformation if the coefficients of the equations of equilibrium are

considered to be expressed in terms of the displacements. Therefore, for geome-

trically non-linear problems, one may also take as allowed states of displacement
in addition to the states of stress of the shell.

In concluding this section, let us consider the functional (13.7) for a parti-

cular problem, namely, for the case 5,_ = 0, M = 0, and the contour integral

C

vanishes. Then the following theorem holds: th, actual state of equilibrium of the

shell differs from the statically possible states by the fact that for the former the
functional

• i,j

has a stationary value 5R = 0.

The condition at the contour (13.30) will, fcr instance, be satisfied if:

1. the contour is free

2, the contour is clamped

_-= 0,

_a= G*=0: (13.32)

.,*=0 { _* =0): (13.33)

3. the contour is immovably hinged

_=0, _*=0: (13.34)

4. the contour is freely supported

_:o _*=0 o<_,=,,_,=o; (13 35)

5. the boundary conditions are mixed, consisting of several of the preceding
orles.

If these conditions are fulfilled, the function_l (13.31) enables one to solve the

problem by the Ritz method. The theorem holds _lso if the variations of the forces

and moments are statically impossible /III. 3/.

Let us derive those relations of the theory o' surface deformation to which we

referred at the beginning of this section. In order to simplify the derivation we
shall neglect the shear in comparison with unity, _ntroducing the same error as in

the equations of equilibrium. The derivdtion of th-_se relations for finite deforma-
tions in general coordinates has been given in ]0._] and ]III. 3/.

We resolve the displacement vector T along he unit vectors _ , e*2 • and
_* of the deformed shell: v=,,*,,* + _*u.* + _.u,*. _l hen the derivatives of this vector

will be:
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. + )_l =A,.* e_,e,*+,. ,* (z=l, 2); (13.36)
k--l

Here we have used the formulas (2.18) and (2.22) for the deformed surface. The

quantities e*ik and a)_ may be expressed by formulas of the type (3.5) for this

surface: • | a,,* u,* 0A* +=+k_,.
en = A,-'_" _( -}- A,*A_* 092

=A,--_"a,-_- u'*k'L u2*kl2' -- (13.37)

• ! _u_* u,* OA, _ .

e+2 =At* @a, At* A_ _ O= 2 "k k12 _'*

By (13.36) we find for the unit vectors 6 i and _ the expressions

2

'f_= E {(_'.*- e_'*)"_*- _",* } . _: 6," m* + e,*e,'+ _ _e=_, (13.38)
i-I

where E_ and E_ may be obtained from formulas like (3.20) by substituting --e_k

and --<_*. instead of elk and mi(Sik = 1 for i = k; 5ik = 0 for i # k). The expressions
(3.13) may be written as follows:

o_, 0_ O_t" _;-;-_k " (13.39)

Introducing -0_ and ei from (13.36) and (13.38) we find

2

• • ! _ o_ _e;,+,;_ Z e:/,; / _,®_+, (13.40)
2_Ik _ elk _ e_i Ai*Ak * O_i O_k

By adding two different expressions for eikwe obtain

2,i+= _i,+ _],,= +;++ _,,. ( 13.41)

Formally, this expression recalls the formulas of the linear theory. In order to

find other expressions for the components of the bending deformation, we have to
calculate the derivatives _-'_-='.

Since t,_*i = _*_i , we obtain

aaj d_j _ d_j

Substituting for ei] from (2.18) and for _ from formulas like (2.22) for the de-
formed surface, we obtain:

• + (13.42)

A_ +. 0% I - ---- E+I+j+ -- +[2 ( '¢72 -- ' ) _I- +;l e21 @- j_._-+ +a I "

where the quantities ei were taken from (13.38).

Using (3.31) we obtain £},)- }:_:}_/tE_- l)- ,_ Introducing this expression in

the previous equations for the components of the bending deformation we obtain

*":_I(E'--]) -_" 0o, - A,A, o,,_ *---

,,:,,=+,+:(_,, I) A_' o_, _,_-_-<_÷++H+'2,+"+,+

(13.43)
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ThequantityE3maybeexpressedin terms of the rotation angles _1 and ¢'_2;

squaring (3.16) we obtain

where we neglected elongations and shear in comparison with unity. 4r
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ChapterIV

CLASSIFICATIONOFPROBLEMSOFTHETHEORYOFSHELLS
ANDSIMPLIFICATIONOFITSFUNDAMENTALRELATIONS

S14.SmallBending.LinearTheoryofShells

Thegeneralrelationsoftheprecedingsectionshavebeenobtainedbyassum-
ingthatthedeformationsandtherelativethicknessoftheshellt/Rmaybeneglected
incomparisonwithunity,i.e., assumingthat

]/'2tx_tp,_ l, L_ep, t/R,_l, (14.1)

where _ is the limit of proportionality of the material of the shell. The symbol
shows thVat the compared quantities are of the same order of magnitude. R i s the

smallest radius of curvature of the middle surface of the shell, x is the largest

value of the quantities xi); and e is the largest value of the e_j. For particular
cases, these relations may be considerably simplified.

For al we shall take such dimensionless coordinates as to obtain coefficients

for the first quadratic form of the surface _ of the order of magnitude of L

Aj_L t=l or 2 (14.2)

where L i8 the characteristic dimension, for instance, the width of the part of the

shell under consideration or, if we consider the entire shell, the minimal radius

of curvature.

We shall also assume that the geometrical parameters of the shell vary

smoothly i. e., that

ALj_A_; ku,m_kll, (14.3)

where, as in the preceding, the comma before the index j or m denotes partial differ-

entiation with respect to ,xj or a m, respectively.

We say that the bending of the shell is nsmalln if the rotations of its linear

elements in bending are everywhere negligibly small in comparison with unity:

wj_ 1. (14.4)

In this case, the maxima of the tangential displacements and the bending may be of

the same order of magnitude as the thickness of the shell, if they are slowly varying

functions of a i, whose derivatives with respect to a i are smaller than or of the
same order of magnitude as the functions themselves. The maximum deflection of

the points of a cylindrical tube compressed by an external and internal pressure

uniformly distributed over its surface, may, for instance, be of the same order

of magnitude as the thickness of the shell. In the contrary case, we obtain accord-

ing to (3.5) and (3.13):
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From (3.5), in the case under consideration the quantities eik will also be small

(of the same order of magnitude as _p or smaller).

If the moduli of the projections of the displacement increases _-- !/2 times on

differentiation with respect to a i, we get w i_w,_ -I/2 and accordingPto (3.5) and
(14.2)

m_._lL _ _- a_,

In that case, we may assume that, in our theory, based on neglecting (in

comparison with unity) quantities of the same order as ep or t/R, the condition
(14.4) will be satisfied only for deflections which are small in comparison with the

thickness of the shell and for which w _<te_ i/2. The tangential displacements u i

are such quantities and the elk are negligible in c)mparison with unity.

Therefore, if the condition (14.4) is satisfi_:dwith the degree of approximation

assumed, one can use the formulas of the linear theory of shells:

•,,R e,,, 2,,a_-e_ 4-e_, 1.2 (14.5)

A,A,.. = -- Aaw,,,--A,.,_,, A,A,x,_ = --Azm,.,4- A,j®,,

where e 0 and o)i may be determined by (3.5). One also has to put k_j = kil+Xlj_klj
in the equations of equilibrium (7.4),and in the boundary conditions the components

X_ of the external stress in the directions _* and m* of the deformed shell have

to be equated to the components X i of that force iz the directions ei and _.

Let us consider the possible particular stales of stress of an entire shell

or of a considerable part of it (when L-R).

A. If the bending elongations are negligibly small in comparison with the

elongations of the middle surface, we shall call i_a nmembrane stress states. In

that case, nthe membrane forces n may be detern_ined from the approximate

equations

(A,T_,),,-F(A, It;,).,-{-T_2A,...-T_A-.,4- A,A..X,--0, 1,-_2 (14.6)

r_,_,, 4- 2T_, k,, 4- T_/_._, - - X, = O. (14.7)

Their components in the directions e_, e*, and i_* after deformation may be

equated to the corresponding components along the directions e_, e 2 , and
before deformation.

B. The bending and the membrane elongations may be of the same order of

magnitude. We shall call such a state a "composLte state of stress". In particular,

deformations of this kind may occur in the neighb)rhood of the fixed edges of the

shell (Sedge effect"). In this case, there may be considerable local variations of

curvature even with small deflections, because tte deflection function w increases

considerably upon differentiation with respect to *i"

* From (7.5) and (9.5), we have

_7,~ e,. M_- _t_. A,_,*-M_,,- et,,,
i, ]. k_], 2.

Evidently, the maximum elongation by bend ng occurs in the extreme fibers
z = J=t/2; the order of magnitude of this elongatto _ is tx. So, in this case
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I.... tt_j _ ,. ( Aj T;t ).m _ LE:, m"

A,A,N,'_'#~ LS'*:_..,~ LE..,j.

Therefore, in the first two equations (7.4) we can neglect the terms containing N]*

and use the approximate equations (14.6)*. In the third equation (7.4) the shearing

forces have greater importance because, for instance,

may be of the same order of magnitude as the terms

AiAtT_ U_ L2Et*/R .

In fact, the ratio between these quantities is _ts, 11/Ls. According to our assump-

tion, sl1>_e , butt/L<<l. 4r

Therefore, in the case considered we have to use, instead of (14.7), the

equation

(A,N,*).,-]r-(A,N..,*_.= -- A,A,(T;,k,, -t- 2T_,k:,-}- r_k_ -- X,) =.0 (14.8)

where N*i is given by (7.5).

C. If the bending of the shell occurs almost without elongations,

,_<_tx, (14.9)

and the simplifications of the cases A and B will no longer be valid. This case

corresponds first of all to pure bending of the middle surface of the shell. It will
occur when the surface o is not closed and is not fixed to some contour which does

not lie partly on the asymptotic line of the surface* *.

As we know from the theory of surfaces, a line along which the curvature of

the normal section of the surface is zero is called an asymptotic line of the

surface. In particular, this property belongs to the straight-line generators of

developable surfaces. Cylindrical and conical surfaces are the simplest surfaces
of this kind. A thin shell which has a middle surface of this kind, with a rigid

contour only along an asymptotic line, may be easily bent and is not very stable.

Therefore, with thin-walled structures of the shell type at least one rigid fixture

is usually introduced which does not coincide with the asymptotic line of the

middle surface of the shell. In view of that, in the following we shall not consider

details of such cases of equilibrium of a shell and we recommend to the reader the

monographs Jo.5], ]0.8/, and ]0.15]***, which deal with the linear theory of

shells. But let us note here that, in our case by retaining the terms depending on

N* in (14.6), it is not yet possible to ensure the required degree of accuracy of the

theory based on Kirchhoff' s hypothesis, because when using this hypothesis an error ****

* A particular case, when the above estimates become less exact owing to

the mutual cancellation of the principal terms, will be considered in § 18.

** See S.P. Finikov, Teoriya poverkhnostei (Theory of Surfaces), Chap. IV.

The most comprehensive study of this problem may be found in the mono-

graph ]0.8/.

**** See /0.14/, /0.15/, and /0.19/.
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M_j ku _ N_*.

is, in fact, introduced in the expression for Ti*j , _. Besides, for small bending
the bending stress in thin shells is very small; t_erefore, the case C for which the

membrane stresses are small is not of interest for the determination of the state

of stress. When the displacements are small, the case C is also not of interest

even for studying the form of the deformed surfac e. Therefore, in a]l cases, unless

otherwise specified, we shall determine the state of stress of the shell for small

bending before the loss of stability by superposing the solutions for the cases A

and B. This is admissible because of the lineari'-y of the equations of equilibrium
for small displacements.

Long thin shells occupy a special place in tiletheory of shells because there

is a small bending even when the end sections ar_ fixed. The problem of stability

of such shells will be considered briefly in the fo lowing. The state of stress of

these shells far from the edges and before the lot s of stability may be determined

to a sufficient degree of accuracy according to the membrane theory, provided

that the following condition* is fulfilled:

t'n'(,,'-- Z)'Z'<<3.4, R', (14.10)

where 1 is the length of the shell and n is the frequency of the sinusoidal load applied

to the end contours of the shell. Evidently this condition will always be satisfied

in the case of symmetrical loads (n = 0) and of beading of the shell as a beam

(n = I). If the load applied to each edge is in equ:librium with itself (n " 2), the

fulfilling of condition (14.10) will depend on the qtantity l/R. We shah call this

the "thinness" of the shell.

In order to illustrate the theory of small be lding, let us consider an example
of determining the influence of the edge effect on :he state of stress of the shell.

Let a circular, cylindrical shell be in equilibriun under the action of a uniformly

distributed internal pressure of density p, and an axial compressive force To,
uniformly distributed over the circular end sections.

We shall assume that at these sections, which are rigidly fixed against bend-

ing in their plane by rings, the conditions for hin$ing are fulfilled. We shall take
as coordinate lines the lines of curvature of the n iddle surface so that

d_'= R' (d,,'+ d_,',,

where Ra I is the coordinate measured along the generating line from the middle of
the shell, and a zthe polar angle. Here,

A,----A,=R. k,,_--k,=--O, k2.,=I/R.

At the ends of the shell (for (l t = fl/2R) the follow ng conditions must be satisfied:

r;,, =- r,, _=o, ,_,_=of-,,+,,,,)=o,
(14.11)

u2=O, T,= = O.

The latter two are automatically satisfied owing t_, the axial symmetry of the load

and the boundary conditions; besides, all quantiti _s which characterize the defor-

mation do not depend on (z2. Hence, according to (3.5) and (14.5):

* See formula (7.5) in Chapter II of ]0.8].
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Besides,

From (14.6) we obtain

Let

I

2_,.=E(-.., +u,_).=0. He=K(!- 9.,==0. *==_IR,

_I_=_,.IR, ===0, z.=--_,./R =, _2=_=,_=0

XI -----X, : O, X==p

T_'=t= const = -- TO_---E't (=,= Jr- re==) :[ 1 -- v=).

=. = -- _*z= - ToO - v2)/E/, T_2= -- *To + Et*za
(14.12)

where w b is the deflection due to the membrane deformation and w Kthe deflection

due to the edge effect. Then

r,," = T_ H- Tfi,

and according to (14.7)

Tb -----pR

On the other hand, according to (14.12)

Hence=

,rt : we have

to (7,5)

Tb== -, r° + z,& = -,r, + et=b/R

: (pR + ,To)R/Et. (14.13)

T_ = Et*[2 = Eta"/R.

Introdu_

w_ m + 4h'_. = O, _* = 12 (1 -- _) RVt =.

In view of the symmetry of the boundary conditions

_-./_ = C1 ch kal CO_ kal Jl" CZ Sh ),a I s_n _.al.

A=N,*= M,I, --D,,,.,.

,_ expressions in (14.8) we obtain the equation for wK:

Therefore, from

we obtain

_b+ W'=O, _,, =0 when al=l/2R,

_bcb_c°_F , C= wbshFsinF F=kL/2R.

C°S_ F + sh_ It COS_[* + sh_" '

(14.14)
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If the shell is not short, then i>_2R, l_ RV_, and admitting a negllglble error we

may assume chp_lhp._i I. Besides, the moduli of the functions ch X_, and sh1=z

decrease rapidly with increase of the distance from the end. Therefore, w K is

significant only near the ends, where jchX_!_l_hX_ll . Consequently, in the boundary

zone a] = 1/2R we have

WK_ -- tlbch ;t_l COS(Il- - X_I)/ch I_.

Whence, applying the usual rule for determinati)n of the extremum of a function,

we find:

C )/i3 _ Fch I_ where _, _ i_ -- 7 _;max_'_bch I*-- _-

After reaching this maximum, the edge effect rapidly decreases and at X*, :_-- _p2

it becomes small. Therefore, the width of its effective zone at each edge is
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§15. MediumBendingofaShell.TheoryofShallowShells

Weshalldenotebymediumbendingthose cases when the maximum deflection
is of the same order of magnitude as the thickness or larger, but is small in com-

parison with other linear dimensions of the shell. For the sake of definiteness,
we shall assume that in this case the squares of the rotations of an element due

to bending may be neglected in comparison with unity

*_I. (15.1)

Evidently in this case the rotations of the elements e12 and e21 in the plane tangent

to o, and also eil, are small. Therefore, it results from (3. 13) and (15. 1) that

! 2
e,,....-T (e,+ el,+ jd.

Neglecting the squares of elongations and the fourth powers of the quantities eik

and mE, we obtain

I 2 I m2
.... e. _-Te_2+T ,,

(15.2)
2,,2= (l+ e.)e_. + (l + e_2)etj +,,h -,.

These expressions may be further simplified for the case of shells which satisfy
the condition

O_(L/R)'<_ t, (15.3)

where B0 is the rise angle of the shell before deformation. They may also be

simplified for the case of non-shallow shells which divide themselves during defor-

mation into many shallow portions, provided that the condition of small bending elon-

gations is satisfied as hitherto:

_ ._.. (15.4)

In order to illustrate the following simplifications of the theory, let us consider at

first the bending of a thin straight bar AB = L with small elongation; we shall as-

sume that the middle line of the bar turns into the arc AB' (Figure I0).

In view of the small elongations and of the rela-

// B rive smallness of w, we may write the approximate

equalities:
m oo, -----'-_-.oe, ,_8'-_..AS'_AB; l._l_-t{-L; (a)

Figure 10 {utl_i'w_l[, I.,,,l_lw,,-,[.

In this case, the change in curvature of an element is

small and is xlt=(,)i/L. As distinct from this, during

the bending of a bar with a large initial deflection, if condition (15.1) is satisfied,

the change in the curvature may be of the same order of magnitude as the initlal

curvature. Let us consider, for instance, the bending of the arc L =_JAB of a

circle of radius R from the position AC IB to the symmetric position AC2B. As

shown in Figure 11, the maximum deflection in this case is
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•m -- ctc, _ 2Rll -- ¢-os"_ =, R'_--2/ 4. '

where (a is the maximum rotation of the linear element from the position e; to posi-

tion _. On the other hand, L _Rw 1. Therefore z#= _{b), wb- _eby, as earlier,

et b c/

0

Figure 11

where

The same calculations for the projections of the displacements

are also valid for the gene "al case of medium bending of a
shallow shell. From (3.5)(a) and (b) for shallow shells:

ell _ el2 _ ®11 ,

A,k_]u, _ _L:'R 3,

(c)

That is, when neglecting =_ and ®_ in comparison with unity,

we may replace the formulas (15.2) by the approximate formu-
las

I ? I 2

tit _ett +"_" =t, tit = e=a+ _-w2, 2=_=eu+e_t +=_¢02, (15.5}

(15.6)

_e

As in the preceding, we shall calculate the quantities e ...... e_ from (3.5). In

this case, according to (3.17) the quantities which deterrnine the'direction of the
unit normal _* to the deformed middle surface w__ll be:

E,=m'e,=.--,,,_, E_.-.-_--_,; E_t'm_l.

Therefore, taking into account (c) and (3.29), the expressions for the change in

curvature of the coordinate lines and for their torsion may be replaced within

assumed degree of approximation by the linear fo-mulas

A]A_f_ _ - A_=_._ -- A].r_, AtAzx_= _ A_.=_*, -- A.,=_._. 1, 2. (1 5.7)

In order to evaluate the errors of these formulas, let us analyze them.

Let

k. = nlaxI k,] I . (d)

and L be the width of the shell tkll_ gp, and mltt;e maximum rotation of an element
of the middle surface.

Furthermore, let

w,_¢_, L/ttt_L/R_,:,,

where r and s are quantities still to be defined; o a differentiating with respect to

the dimensionless coordinate, the quantities whicl characterize the deformation

acquire the factor _,_-x According to (15.6) and (14. 2),
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* t.,,, _-.%- .w,;", ,.,.ll__ ,_+_

By (15.7)

In the most unfavorable case ×1_-k11, because if we assume tkt_ _Sp,

(15.4) will not be satisfied for larger changes in curvature.

Therefore,

condition

Let us consider further the quantities in (3.5) for e_] :

Thus, all quantities in the expression (15.5) for the elongation are of the same

order. If the majority of them cancel each other, our calculation of the order of

magnitude will not be sufficiently exact.

Let us consider several variants:

A. Let , _",,--,p --,p, i. e., there is no loss of accuracy. Furthermore,

1
r=_, tx,,_tk, l_¢p. w_t.

and both the bending elongations and the membrane elongations are of the same or-

der of magnitude. Then the error in formulas (13.5) and (15.7) willbe ep in com-
parison with unity and according to (e)

I

Further. according to (7.5), (9.5), (e), and (d):

A,_ ~ M;,,,- e,,-,!.... A,,_,,,,~ _,%-_,,_,- e.y _,
T;,.I -- EtK,l.i -- et,_ 1.

Thus, on assuming in this case an error ep in comparison with unity, we may

neglect the terms which contain shearing forces in the first two equations (7.4). It
shoul_ also be noted that according to (f) in the sufficiently shallow part of the shell

(where L/O_lr_ and x = 0} the change in curvature and hence the elongation due to

bending may reach the admissible value even for a smooth change of the shell.

B. Let r = 113. The main terms in the expression for el_ cancel each other

in such a way that 0,,--,_, In this case, when determining the elongations from

(15.5), the error will be _--,_, in comparison to unity; but since the membrane

elongations have a smaller influence on the deformation than in case A, the error
indicated is admissible in determining these deformations as well as for the equations

of equilibrium of the forces in the plane tangent to _. If x ll<kllor for a thin plate

with small curvature but with xl]--k11, the above simplification produces a still
smaller error. *

Thus, for shallow shells or for non-shallow shells which may be divided into
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a large number of shallow portions, equations (':.4)may be replaced by the follow-

ing approximate equations:

(A,T_'_)., ÷(A_£'_,t,-t.- T_A,.,-- Z_A=.,-t-A,A,._,=O 1,"-2; (15.8)

(AzN;),,_(A_N'z),=_ A,A.[T_It__F 2T-zkT2_ TC, k_,_ X_a]_O; (15.9)

/_;/== kjj if- zl/ (i,j ----., 2).

Introducing (3.5), (15.5)-(15.7), and (7.5) in these equations, we obtain a sys-

tem of three equations for u t, uz, w. These equations are called equations of

equilibrium in the components of the displacement.

The elongations and the changes in curvature must satisfy the conditions of

compatibility of the deformation, i.e., Codazzi's equations (3.35) and Gauss _ equa-

tion (3.32). For fiat shells the former may be simplified by neglecting the quantities

of the order of magnitude of tk11 in comparison with unity. Thus, the equations
become

_,A=aH).=--A_,====--(A=x_=)., - A=.l=z=-----0 1,2. (15.10)

as in the linear theory of thin shells. Gauss _ eqt_ation remains non-linear, and for

shallow shells it has the form (3.32) as before.

On replacing in (15.10) and (3.32) the quantities ,_,...,x1= by T_ ...., /dTl_accord-

ing to (9,5), we obtain three equations which together with (15.8) and (15.9) form

after elimination of N_ by (7.5) a system of six equations for 7TI, F_. T_, M_. A4r2

and hf_ . That enables one to solve the problem of equilibrium for the components

of the elastic force and the moment, without introducing the formulas connecting

the latter with the displacement, provided that the boundary conditions are given

independent of the displacement components.

If X_z=A';2=0, the composite form of equati_ns is very convenient. In order

to derive these equations we have to satisfy appr¢,ximately the static equations (15.8)

by introducing a force function _ according to

A,_, = (+.,/A,).,4- A,.d,.,/A_,, l,-'_,
(15.11)

A,A= TT_= --'_._e"_-A2.1'p.2/A=-.-A_._'_.dA,

and taking into account the relations (2.27) between the parameters of the shell A i

and k and the definitions (2.19) and (2.24).
lj

In fact, after introducing (15.11), the left-hand sides of the equations (15.8)
become

_ A,A__.,._._j l,-_
Rll_ At _ '

while the terms which cancel each other contain the derivatives of tp up to the third

order included, without containing the factor A_A2/R_R z. For the equilibrium of
the shallow part of the shell, while choosing the cimensionless coordinates _t by

(14.2), this factor will be small in comparison wi*h unity owing to (15.3). Therefore,

we may consider the equations (15.8) as satisfied, although

_J _.

It should be noted that this approximate thecry may also be applied to a non-

shallow shell, when considering the kind of deformation for which the shell devides

into a large number of shallow portions (for exam_)le, at buckling when a large number
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of half-waves are formed on the surface of the shell}. In the latter case, A i _ R - L,
but the force function sharply increases with differentiation so that the second order

derivative with respect to a i is large in comparison to the function itself.

Thus, considering that the equations (15.8) are approximately satisfied, we
introduce 415.11 ) in (15.9). We shall assume that the moment of the external

surface forces may be neglected:

L_ _-_0. (15.12)

Taking into account (15.10) we obtain from (7.5) and (9.5)

AiNi'=D(x,_-pz_._.).t i_ 1,2. (15.13)

But according to (15.7)

x]l _ xn _ -- zlw,

where A is the Laplace operator in orthogonal chrvilinear coordinates:

- ' re,':=,)A,
Therefore, equation (15.9) becomes:

(15.14)

DA_-,+H,(k,,+,,_)+2H2_k,_+,,,)+r_(k,,+,,) -._=o. (15.15)

Here T*ij and Xij may be expressed in terms of the force function _ and the deflec-
tion function w according to 415.7) and 415.11). Thus, 415.15) represents a non-

linear differential equation in w and _. Another relation between these quantities

is given by Gauss _ equation (3.32) for the surface ,*, which may also be written in

compact form.

We shall not deal in detail with the transormfation of this equation. We shall

only point out that in order that this equation should be more readily satisfied, one

has to use the equations (15.8) and 42.27). Besides, according to (15.11) and 415.14),

Thus, (3.32) becomes

ah_ -- Et (x_:--x,,x22--x,,k22--x22/e,,+ 2x,,k,2)= 0 (I5.1 6 )

On using the expressions (15.6), (15.7), and (15.11), the equations (15.15} and (15.16}

form the required system of non-linear equations in _p and w.

Let us consider briefly the boundary conditions.

A. Let the end contour be free. Then, only the static boundary conditions

need be satisfied at the contour. Usually it is more convenient to reduce the forces

and moments to the principal directions of the deformed shell. We shall assume, as

in Section 8, that the normal _* to the end section lies in the plane tangent to the
middle surface o* of the deformed shell. We shall also assume that the external

forces acting on this section are reduced to the normal force _*n, the tangential

force _, the shearing force _, and thebendingmoment _*.
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Takinginto account that for small deforma ions

nt* _, nt, "¢z*_t, d$* := ds,

we may write, according to (8.5)

_/= o=-7"_- o,-7"d7-- %-' _,, o., ' .4-;"

Therefore, using (8.11) and (8.12) and neglecting tk u in comparison with unity,
boundary conditions (8.21) may be expressed in the simplified form

tI,_ = Y:, n_ + 2_2n_n.., + r,'2 n_. (15.17)

gP:_(T2:- Tt*Onln, + Y,'2(._ n_);

the

_,_ = N:n, + N; n2 + n, [(kt;, -- M_) n,n: - m,'2 (n7 - nl)l .,IA, --

-- n, [(M_u -- m:;) ntn, - iV_z2(n_ -- a_ )l ._'A,;

tit _ Sill cp, 111=_ -- COS _,

(15.18)

(15.19)

where T is the angle between the positive direction of the u axis and the positive
direction _ of the tangent to the contour before deformation_ and the trihedron

of the axes {_, -_, m} before deformation is right-sanded.

If the end contour coincides with one of the coordinate lines, the conditions

(15.17)-(15.19) will be considerably simplified. For instance, if it is the line

at= const then _=W2.

B. If any geometrical constraints are put on the end contour, the external

load on the contour will be usually composed of the forces and moments ¢', ¢," ¢5

and _/" along the principal directions of the surfer ._ o. In this case the conditions

(8.35) must he satisfied at the contour. But for _edium bending

e_j_ 1, E, _ -- =_, E: _ - ==; Ej =, I, N_._ <'_5.T_ ;

therefore it follows from (8.30) that

N,"=_N=" + T'u=, 4,- r;2®=, N_+-_N_ "l- _='=+ T_=,. (15.20)

Consequently, in this case, the boundary conditior s are given by the equations
(15.17)-(15.19) after replacing the quantities 0: .... Tj, Me', N=* by ¢: ..... T_I, M,;

and N,". It is not difficult to see from (15.20) that only condition (15.18) is conside-

ably different.

Before closing this section, let us add a few notes on the stages of development

of the theory of shallow shells. As far as we knov L. Donnell the first to show that

it is possible to simplify the equations of equilibrilm for the membranes forces

by neglecting the shearing forces and bringing thete equations to the form (15.8).

He made this remark in his paper /IV. 8/ in cannel tion with the problem of stability
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ofacylindricalshell. Healsoprovedthatit ispossible,in thatcase,tousethe
simplifiedexpressions(15.7)fortheparametersofchangeofthecurvatureandthe
torsion.Wehavedevelopedthistheoryin [0.13/ for any shells which were divided

during buckling into a large number of shallow portions; we have solved the relevant

problems, mainly in the components of displacements, and only for cylindrical and

conical shells. We have introduced the stress function according to equations like

(15.11) where the equations (15.8) for X* 1 = X_ = 0have been exactly satisfied.
In the same work we have determined the degree of accuracy of the approximate

theory. Already in the works of I.G. Bubnov ]0.2] and /0.3/, a slightly curved

bar or plate were considered as plates having an initial deviation from a plane sur-

face. The non-linear theory of shallow shells has been expounded in this formula-

tion by K. Marguerre in his work [VI. 11/. In the monograph by Wei-Tsang Chien

/0.19/ a shell is called shallow when the ratio between the width of the portion of the

shell under consideration and the minimal radius of curvature is small, i..e., when

L R _.< 1. By this assumption, he introduced the stress function and other simplifi-

cations in the theory of shallow shells. At the same time V.Z. Vlasov created the

general framework of the theory of shallow shells in terms of lines of curvature

/IV. 2/ as above, which is equivalent to neglecting L2/R 2 in comparison with unity.

Later, in his work /0.4/, the same author gave more valid reasons for neglecting

this, for the shallow part of a shell for which the intrinsic geometry is approximately

Euclidean. The papers by Yu. N. Rabotnov /IV. 3/, N.A. Alumyae /IV. 1[, etc,

have also undoubtedly contributed to the theory of shallow shells.

It may be seen from the above that the theory of shallow shells has been
developed by the efforts of a number of scientists (as V.V. Novozhilov has rightly

pointed out in his monograph /0.15]).
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S 16. Large Bending of a Shell*

We shall say that the bending of a shell is large when the deflection of the

points of the shell is large in comparison with its thickness and comparable with its
characteristic linear dimension.

will also be large. Thus

Besides, the condition

In this case the rotation of the linear elements

¢/_tv, =e_ I. (16.1)

I
tx_ sp, (16.2)

must be fulfilled in order to avoid plastic deformations. Hence, it results that the

functions that characterize the deformations should vary smoothly;

Therefore,

w.r _ w, u_j -- _ -;, uzj _ at (l = 1,2). (16.3)

'_U -- D= _ EP. _ A_N_ _ EP.p. (16.4)

A. Composite deformation of the shell. Le:

L_R, "_'v, (16.5)

this means that bending occurs with considerable membrane elongations.

Then,

T_j _ Ete _ Etep,

and we may neglect in (7.4) the terms which contail N_. We thus obtain the equa-
tions

(A_Tfl),..J-(A_T_)._-J-TT2A_2--T_2A_._+,,zA,X_*=O i.2, (16.6)

T'_,kTI+ T_k_+27"_L21¢_2 X,_O. (16.7)

which may be called equations of equilibrium for a membrane. They differ from the

equations of the usual membrane theory (zero moments) by the fact that all quantities

refer to the deformed state. In particular, in this case k_: ku+ x H. The forces are
also non-linear in the displacements. Thus, (16.6 and (16.7) form a system of
three non-linear equations in ui and w. When the ceformations are not expressed in

terms of the displacements It will be necessary to _dd to the equations (16.6) and

(16.7) the condition of compatibility of deformatinm_. This condition may be ex-
pressed in the case considered by equations (15. 101 and (3.32). Neglecting e in

comparison with unity, and taking into account that e,i _ e, the latter equation
becomes

_2 -- x,x2s -- x_kz_ -- _.k, _-_ 2" ,_/t,, ,,= O. ( 16.8 )

* The material of this paragraph has been treated, in general coordinates, in

the paper by Mushtari /IV.4/.
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Let us furthermore consider the deformation near the fixed edge %=a_t = const

which has no part in common with the asymptotic line of the surface o. Here the

deflections cannot be considered as large in comparison with the thickness. If the

damping is rapid enough, then in the zone of the e_ge effect

Therefore, assuming

w=_,+wx, (16.9)

where w M is the membrane deflection and w K is the deflection due to the edge effect,

near to the edge we have

A,A,N,* c=( A,A4_=I).,_" D ( A_,_,),=; T*__. T_-[ - _'.

By subtracting from (16.6) the corresponding equations for a membrane we obtain

equations of the same kind for T'_. k (without the terms that contain X_ ). Similarly,
• 1J

by subtracting from (7.5) the equation (16.7) for a membrane, we obtain the equation

(16.10)

Gauss' condition of compatibility is applied in its complete form (3.32).

]3. Deformations with prevailing bending. Let

t=_,,, e_=_<,p =, L_R, x.,_. (16.11)

In this case the external forces must be small:

(16.12)

The bending must satisfy the equations of compatibility (15.10) and (16.8). If, in

addition to bending moments the membrane forces are also given at the edge section,

the problem reduces to the determination of the integrals in the system of equations

(15.10), (16.8), and (7.4). If the membrane forces at the edge are not known, it

will be necessary to solve first the system of equations (15.10) and (16.8) for the

given moments at the contour, and afterwards to determine the forces, by integrat-

ing the linear system of equations (7.4).

In the case of developable surfaces the Gaussian curvature 1/R 1R2 is zero

and the equations (15.10) will be satisfied by substituting (15.7) and (15.6). If we

take the straight-line generators and their orthogonal trajectories instead of the

coordinate lines *xland a 2it will be necessary to set k11= k12 = 0 andA 1= 1 in
(16,8). We thus obtain the equation for determining w:

"_m_:-'_--'_.,2 A==k":.va.n-F A=As,_,,w,H-_ (16.13)

--.}-2w,_:'_._A_.dA_.--(A:.,_:.IA2)2- A2.=_,Hw.=/A2= 0

As is known from the theory of partial differential equations of second order, both

families of the characteristics coincide and may be expressed by the following

equations* :

A=
_I_ (16.14)

d_.=-- _ _.,d_ -t- (A=._A_.,-- A=.=A=_.=-- A='k=_)d_ = 0.

* See /IV.5/, VolIV.
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0i: POOR Q:_,:_.i= !

in the particular case of a cylindrical shell, on setting at= x and a 2 = y, where
x is the coordinate measured along the generatl ig llne and y is the length of the

= , )orthogonal trajectory, we have A z I, k22 = k 2z_Y, and the equations of the charac-

teristics allow three integrable combinations

d_,--O, dO,----O, d_=--O, (16.15)

where

= ,,-,,.-, j',,,dy, ,,=.--.o,- ff,=  dy

Therefore, the complete integral of the system is determined by the equations

e, -- C, O,= _, (C), _, -- _= (C).

where _= and _= are arbitrary functions.

We may obtain in this case the general integral of the equation (16.13) by

e11minating C from the equations

II= e_- C=m_C--x_,(C)-)_=(C)Jrf(y)=O; (16.16)
OO/dC = -- 1 - _' (C) - y_='(C)-- O,

f(y) = --yylhiciydy. (16.1 7)

We shall further assume that the edges of the thin cylindrical plate are free

and subjected to the action of those distributed lending and twisting moments which

cause a change in curvature:

*,:= --W_ --= 9E0, _*t- --_y,= --p, (16.18)
xll z_ W=7. _ - " L

From (16.16) and (16.13) we obtain, using (16.17):

m.==?,, _._=_,--/.j, _._j=?,'C_==,
'C_,.jy=_ .y-l-k,=p, to.,,=_='C.,+?,'Cy=_T,

p - •(p- *_) = ,_,'C,,, =c.,"_-+ c._,-- - 1.
Therefore,

,+.)d,
(16.19)

d,p,--=dx+Tdy, d_,=_d(+@ _.)dy.

From this, we can find the expressions for C, ?,, and ?, in terms of =, _. I.

At the same time, the integrability condition for (16. 19) must be satisfied

6'. _ o_ & == 0 (_'_ a_ (16.20)

For instance, if ==const, 7=const, =(p--k:=)= =, we readily find from (16.19):

= z'y' ._s ?,-- _ y Jr lrx,C - - Txy-- _-, V,= =x _-_y, (16.21)

•,=-_+T+_ -/(y)

H a = O, this solution will be useless.

C. The edge effect at free edges for larg,. • displacements. In order to illus-

trate such a problem, let us consider the deter,_Inatlon of forces and moments whic_

have to be applied to the straight edges of a thin, circular, cylindrical plate to

maintain its cylindrical form (or any other forrf very near to that) after a large

bending.
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Usingthe same notations as in B, we may in this case write A s = A 2 = I,
k22 = l/R, k_2 = l/H*. The equations (15.10) and (16.8) will be satisfied if

x. = [/R* - IlR_ x_= ¢onst. (16.22)

The equation (16.6) will be satifeid if

T_2=0, T_..=0, T_.=0, (16.23)

because X_ = 0.

The boundary conditions

T;] = 0, _ = D (_=l _ '_''), _" = _,'), = 0m (16.24)

will be satisfied for x = ±1/2.

It follows from (16.23) and from the first of (16.24) that

_=0, =lj----vm==, T_2--Et===. (16.25)

The last of equations (7.5) and Gauss' equation (3.32) become:

D_n. ,+Eta,,=0, =_=k_x=l--0, (16.26)

or

=,5._: + 4x,=.,- 0, x - (3ClV3Ti-_'-,,)/re.) '_,.

The solution must be an even function of x. Therefore,

xll _ C_ ch kX COS _x -_- C_ sh ),x sin Xx.

Assuming

chp_sh_, i_ = M/"2,

(16.27)

we obtain from the second and third conditions of (16.24)

el _ ¥X0 COS_ 4- sinF _ 0 COSF -- Sin/_
-- 22 Ch'----p"' .... = ch--_ "

With these, the force may be determined from (16.26) and (16.25), and the bending
moment from

M. = D (_ + .=,,)

A particular case of this problem for R = _, has been examined by another method,

in the monograph by Love /0.11/.

The classification of problems of the non-linear theory of shells suggested in

this chapter has been given in a more general form in the article by Kh. M. Mushtari

/IV.4/. A somewhat modified classification has been given in the monograph by

Wei-Tsang Chien ]0.19/.
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Chapter V

GENERAL THEORY OF STABILITY OF THIN SHELLS

17. Fundamental Equations of the 'theory of Stability of Shells

Let the middle surface of the shell before deformation he referred to the ortho-.

gonal coordinates a I, a z, z with the unit vectors el, e2, _n. We shall consider two

successive deformations of the shell. After the first deformation defined by the

displacements a

the surface a ! becomes the middle surface of the shell. We shall fix the points of

the surface o I by the former coordinates al, a 2 and z. In spite of the smallness
of the elongations, we shall not neglect them initially in comparison with unity, since

that may sometimes lead to inexact results. We shall neglect only the shear in com-

parison with unity. As shown below, his leads only to an unimportant error, even

when reducing the main terms in the equations ( f equilibrium. For the present we

shall not put any limitations on the magnitudes ( f the displacements. From equations
(3.4), (3.5), (3.16), (3.17), (3.13)-(3.15), (3.29), (9.5), and (6.13), we shallfind

the quantities that characterize the first state o: deformation and stress of the shell:

we shall denote them by superscripts I; the quantities which are not specified here

may be obtained by permutation of the indices 1 and 2.

The following are the most important quantities:

1. the fundamental vectors of the deformed coordinates

r_=A,{(1-I- el,) e, 4-e'u e-2+ _I m}, (17.2)

where
A,A=eI, = A:._., -I.-u_A,., F _ 'kt,A,Az,

a,.,:= _f, - A, (-Ik,, _-_,,),
A I i _Z2)¢01,,A,e,2E A=uzl --u,A,.:+ wtk,zA,A2,E_ = e',2-;-(i+ ' I

Ei=(I +,_,)(I +& - e_,e;,;
(17.3)

2. the elongations and shears

, , -- I, ,2 ,),= eu-t-TLeu + e ,_+®[

[ I 3t- ellezl + ;22el2 -t- ohm2

3. the changes in curvature

-- (Et, u., + E2e,._., +llUl_ I [ I I I Ie21kt2 + e_z,°,,

•-}- E#oLt -_-_2AL_/A ) :At,
_l e J L

+ E_,, - ®Ia,,/a ): a,;

(17.4)

(17,5)
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5,

surface

the internal forces and moments

/'/, = K(,,I,-.F ,,h), rl._= K(I -- ,,)d,_,, (17.6)
M',,=D( ' ' M',_=DO '

the external forces and the external moment per unit area of the middle

_" XZ-e'--°"-'-- X '-_ L'= '-' L'e f= L t-t-A_ez-t- ara, L_e._-- 2 _. (17.7)

These have to satisfy equations of equilibrium similar to (7.4) and (7.5):

(A[TI,)., 4- (Alr_t)a -.1- T[2A,2 -- T],A_., q.- (17.8)

+ A,A2 ( J}l,Ntl-_- k]2N;+ XI) --O;

_'A, A,',').t -.{-(At N])., -- At Az (lilt TI1 Jr- 2k12TI., -I- (17.9)
! I+ anTn -- Xt) = 0;

(A,,'WI.)., --[- (,4,M_,) z + M_aA,.._ -- M_A_., Jr

-4- A,A:t (L', - iV,')--0

(k_,= k,j + .b). (l 7. lO)

If, for some values of the external contour and surface forces, a second equilibrium

form of the middle surface denoted _* becomes peqsible in addition to the form

o I, one says that the shell is in a state of "neutral equilibrium". The correspond-

ing load is called a critical load, because for an increase, however little it may

be exceeded, the form of equilibrium oI will lose its stability.

We shall assume that the additional displacement

_ =,,,_, + u.2,+ w_,

which turns o I into _* is infinitesimal. The components of the displacement in

the disturbed state o* are

After substituting these in formulas like (3.5) we find

e_t--et,+e , e_+=e_t+e ..... _=®',+0_,, 1,2 (17.11)

Where eij and m i are infinitesimals which may be calculated from (3.5), and e_, and

,_1 are quantities of the maximal order of magnitude unity, which may be determined

f_om (17.3). We denote by e*ii and 2 e_z the elongations and the shear of the middle

surface o*. They may be calculated from formulas similar to (3.13)-(3.15), using
(3.5). (17.11) and (17.14). In the expressions for the quantities which are of inte-

rest to us we shall retain, for the moment, the infinitesimals of second order,

neglecting only infinitesimals of the third and higher orders.

Thus

it! =: ttt+ ill 4- Z1:,,,,=_.+-f(_,,+e_+,oT'), " ' ' ..--"-_

2,;a = e;, 4- e;, 4- e]',e;, + ehe_,.4- "_,'*'f' = (17.12)

= 2 ( 'I, + "_ + ';',), •

where we denoted by £ij I and s,.j" the infinitesimals of the first and second orders

respectively. These characterize the additional elongations and shear due to the

displacement _¢:
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, ,t |

%,=(1-.I-e{,)eLt-Jr-el2et.. +'I .... ,, l_(d, + _+ _'),

2J'_=e'ze_"i-et'el2-t-(l +el_)e2_"b(l "E"eh)e_'"b®'_ +®'°'l' (17.13)

The components of the elastic force along the principal directions of the surface

a* are:

_, = K(,,, +,,;,) -- rl, + r;, + r;',,
_--K(_ -v.;. = rh+ r',,+ r;',,

Pu--K(,_'tt+v,_), T;,=K([-v),]z, (17.14)

r;',-- K(._',+-_), T;,--K(t -,),;*, 1,_.

In the same manner, the total change in curvature on going from the undeformed

middle surface a to the surface a* may be det,_rmined from (3.29)

x_z_s+x'e+x_, i, j_ 1 and 2, (17.15)

where the x[j , given by (17.5), are the changes in curvature due to the passage
from o to a ! and x'. are the changes due to the additional displacement.

ij

Linearizing (3.29). we find:

x. _ -- e_tkil -I- e_lzH - (_2A, z + Apm)/A]A_,

since in this case

te=2ktt _ tE,.2ktt _ • 2t/R,

and e2zkH may be neglected in the expression fo_-x_ as(1/2)txl]_ e22. Lf(I/2)txij<<Skl

the influence of the bending on the equilibrium of the shell is in general insignificant.

Therefore, in all cases:

z,_---. --e_k. -- (A._®_., - ®t_ L_)/A_A_, 1,2

(17.16)

It should be noted that since e_--2_- e_t, we cm replace el2 by e2_ in the second

formulas after neglecting the shear as before. We thus obtain the expression for

the torsion that is given, for instance, in the mmograph by V.V. Novozhilov /0.15/.

Introducing (17.11) in (3.29) applied to x*.

and (17.15), we obtain* :

and using (3.20), (17.5), (17.11)

(17.17)

* Formulas (17.13) and (17.17) for general coordinates have been given in a some-

what different form in the works [0.7/ and /v. 4/.
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where the E li are given by

El' _ elsw, _- *l,wl -- .l -- e_sm | -- e|,00'| ,

E,' -- --el,e,, -- euel, +e,, (1 + el, ) + e,, (1 -I- e_,). (17.18)

E_" _ el,or-- es,wi, E*_' _ elaett-- elte._a [, 2.

We may find the bending and twisting moments of the internal forces from the well-
known formulas

where

Mr, = D (,t, +,,_) = Mh + M',,+ M_',....

A_a=D(xl, + _), M'n =D(,'t, + vx_a),
M';,-- Z_(x',;+ ,x_)....

(17.19)

As seen from (7.5) and (17.19), the shearing forces are also composed of three
parts

Nj*=N_' + N{ + N{'. (17.20)

which may be calculated from the corresponding equations similar to (7.5). If the

external surface density of load does not vary during the deformation (as, for

instance, the shell's own weight),

R*=x_*g,* + x,*_,*+x**Ta.=x,L+x,_+x,_. (17.21)

where X t, X 2, X 3 are the projections of the load density on the principal directions

of the shell before deformation, Multiplying this by _ we find

Whence, using (3.19) and (3.20), we obtain

,¥,* = X, (t +eI,+en)+X.(et_+ev.,)+X_(_ I +,u,), (17.22)

Xa* = XtEx _"-_- XtE_* _- XzE$*.

Similarly,

x_= x,(l +el,) + X,el_+ x,* l, (X7.23)
x', = x,e[ + x,E, + x,e_

From these we can determine the components of the surface load along the principal-

directions of a* and e I if the components along the principal directions before de-

formation are given, If the vector X changes during the deformation in such a way

that its components along the principal directions of the deformed shell remain

invariant, then

x:-_=xj, /=_, 2, a.

The hydrostatic pressure, for which

X_X_=X,=0 _,he, i=l. 2; X,*_X_=X,=--p, (17.24)

is an example for such a "self-adjusting" load. Here we assumed p >0 for the
external pressure.

* We thus obtain expressions for all the quantities occurring in the equations of

equilibrium (7.4) for the state G*.
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_r Subtracting from the latter the equations oJ equilibrium (17.8) and (17.9) for

the state a I, and taking into account (17.14), (1_.19), and (17.20) and the equations

At*=.41(!+*_,)(l+,ii). A_'-=A, (I+._,). (17.25)

we obtain the equations of neutral equilibrium, which contain the components of

the additional elastic forces in the principal directions of a*. Here we have neg-
lected the terms containing infinitesimals of the second order. We shall also

neglect the small quantities of the order of T_j e_) e_,m. Besides, we have neglected

before the shears in comparison with unity; therefore, we may also neglect, in
the equations of equilibrium, the small terms like T_leil or T'2_ Ie 1l, retaining,

however, the terms like T_lell or T'll _t"

For example

4r;,- a'r[, o A¢. rl, + A,it + .') r',,.
" " ' ' ' +A,(t+,[,)T2,=A,T_,.*AIT21-- AIT2I _ Alel;g_l

Thus, we bring the equations of neutral equilibrium to the following simpler form

[a,e,,r:,+ A, (l + ,_)T',d.,+ (a, r'_,).,+ T',2A,.,- T_(A_e,2),, --

- T'_IA, (1 +,_)]j Jr-A,A:IM x',, +N,'(k. + x[d+ (17.26)

+ _'_';,, + Iv:' (_,,+ _I,)+ x,. - xh = 0

A '( :IV, )j +(A,N2').,- A,Az [T],x, + T'u(k. +x'.) +

+2_d,,+'.,r;_(k,, ' ' '-t-xn)-- T_ x22-_- (17.27)

+ r;_(kz_+ ,_) - x," + _1-- 0,

where NIl and N_ I may be determined from the equations (7.5) after replacing the

X$ij by Xlij.

Let us, further, derive the energy criterion for stability of the shell.

* Let _, ¢bH2, _b_ be the projections of the e::ternal contour force on the axes ej,

e re, and _ the bending moment of the external (ontour forces. From the formulas

(_.30) for the first state of equilibrium we find the projections of the internal elastic

force on the undeformed axes which we shall mmk by the superscripts H:

,.-rl, O+,[,)+ l , , ,r,1- r:_._,+ N,E:; rI ;= r[, 'I_+ r',_0 + ._) + N,e,,''
(17.28)_.=, I , , ,I L2"Tit _1 + TI2 w'2"_ EsNt

According to (8.32), for this state we have the following static boundary conditions:

riln, -t- r_ln_- E] 1,2,

. I, I, Els aH I (17.29)q>a= NI nt + N2 na .... ,
_s

a'= MI,.,' + 2MI,.,._+ M'.,. = o'.
where, from (8.12) for -_ni

and from (8.7)

-' = (MI,- M'.).,._- ' _M,_(., -,,), (17.30)

0/_ #H I d_ 0/-# d_ ., dH' a, a# (17.31)
_, -_,, _+ _ d--=-5:_,--7 +X'_,,
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* Analogously,neglectingthe squares of the infinitesimal quantities, we find for the

state ,,* _,,= r;, (, ÷ .,,) + _,,:, + .f_ = ' '" T,,0 + ',, +',,) + ",, (' + 40+
+ r',,(4, +..,) + r'..4,-,-_',(_,+ e,) + N',el,

= rl, ( e]=-I- e.) + r. e:a+ T[Z(! 4- e_+ _,) +- T',=(I + "_z) + (17.32)

+ ._( _;+ _.) + .; e', .;"= rl, ( -l+_, ) + r;,-I+
+ fi,( '4 +.,.) + r;, "4+ el(N:+ N;) + E,,.,.

Since the external contour load remains invariant with loss of stability, we

have the following static boundary conditions which are similar to (17.29)

.? = _., + _._- ( e',+ e',) -_- 0--S-

8Hi =i #/-F
a,;= N_., + N_2,_-- ( _ + _' ) _ -., 8-'-'s-' (17.33)

a= ( ._,+ M'.).,,+ 2( M:=+ M',_).,._ + ( Mh+ M_..:
= (M;,- Mh).,._- M',_C.,"- ".9,

8H¢
_ ,,=H', /A, + ,,,M_/A_. _r

88

Subtracting (17.29) from (17.33) we find the static boundary conditions for the

additional forces and moments

, ] 1 ,
ITS, ej, Jr- r'n (1 "1-e_,) q- T_acn 4- T,:,e2_ -I- N{E_ .if- Y,'E_Jm +

+ [r_,, + rhel,+ _,e_,+ r., (e',,+ 11+
+NJE,' +N,'£J]nz E," dH'/Os E]OH'/O.s=O 1,-'2; (17.34)

(rh=,+ Tit=:-t- TIP,÷ ri,_+ E,N,'' + e,M,),,,+
z ' = "' a_I--=I_'--E:_NJ) n_-_-(T22w_,Tnm + T_t='x-_-'u 1-r-_3 = -r"

F_.'3dH=/ds eJOH'/c)s = O; (17.35)

M_tn, =+ 2M'_ n_n= + M'=2n=2 ='0. (17.36)

Besides these conditions, on those parts of the edge contour where the dis-

placements are given, the corresponding geometrical boundary conditions must be

satisfied.

Thus, after replacing the forces and deformations by their expressions in

terms of u z, u 2, w, from (17.26) and (17.27), we obtain a system of three homo-

geneous linear equations with respect to these quantities for the homogeneous
boundary conditions (17.34), (17.35), and (17.36). Evidently, the solution of this

boundary problem will be different from zero only for certain combinations of T z
and M[ which characterize the critical load. ij

ij

Since in both the equations of neutral equilibrium and the boundary conditions

most of the coefficients are mainly variable, an exact solution for this boundary

problem may be obtained only in the simplest cases. Therefore, it is often neces-

sary to resort to approximate methods; among these, the energy criterion for

stability, based on the principle of virtual displacements, is the most widely used.

In § 10we deduced the equilibrium condition (10.14) where _Ais the elemen-

tary work of the external load in the possible displacements from the state of equi-

librium determined by (I0.13), and _W is the variation of the specific work of

deformation, given by (I0. II).

Let us at first apply (10.14) to the first state of equilibrium. The specific work

of deformation corresponding to this state is:

95



Therefore,

w, = T_ IKl(.h+ ._,)' - 20 -,)(d, ." - d,bi+

+o[(.h+.4, 2(i ''-4_')J}_ _ .) (., ._ .

ai_:Kl(d,+.-)(8.h+_.-) (_ -.)(.',,a.'..+
! !

+.=8,,, - 2d¢.[.)I+ o l(d. + .I_ (_, + _.i_ -
I I I 1 ; I Z

(17.37)

(17.38)

where, according to (17.4)

I 1 I 1 I !_,u = (i + d_) Se+_+ e,_e_ 4- ,,,_,,

I I ! | I
2S,_= (I-{--era)8e_2+(I +ezl)_2, -t-el_]2 +

+ &sel, + -i,,,l + *I_I.

As has been pointed out in § I0, the last term in the right-hand side of
(19.13) is zero.

An elementary virtual displacement from the state ol is given by

a7_t = ¢'+llu:-[- e'zlfu_,-{- _tiw'. ( 17.3 9 )

We assume that the external surface force X density may be resolved into the com-

ponents Xt andX2' The first component is independent of the deformation (for

instance, the shell's own weight) and the second varies in such a manner that its

projections on the principal directions of the deformed shell remain constant (for

instance, a hydrostatic pressure). Consequently, the external surface force for
the state o I equals

N' = 76+ 2 _,= x,,_, 4- x_, + x,,F.,+ ( 17.4o)
x.,-il + x_' + x,,:_',

where -'i'lL .... , X=3 are quantities which do not depend on the deformation. Using
(3.19) and (3.20) for _] and m ! , and multiplying (:7.39) by (17.40) we find the

elementary work of this force in the virtual displ:tcement

2' s_L= [x, + X,, (1+ dd + x,,e:.,+ x3,_J aul+
+ix,,+Z,,eb+X:(l+el,)+ ¥,,_'1]_i+ (17.41)

+ (x,, + x,,,d + x,,,g.+ X,,E_,)_,'.

The equivalent moment of the external surface forces with respect to a point of

the middle surface is usually small, and we shall therefore neglect it. Let the

external load for the state o I, equal _I be expressed according to (17.40) in

terms of the quantities _bi,which do not depend olt the deformation. We shall con-
sider that the external bending moment G is independent of the variations of the

deformation. Then _ may be determined fror_ formulas llke (17.41)

_'--_,_I + _,Ei + _E'. _,.' - Z,s_',+ _._e'+ _l,
(1'/.a2)

,i' - .F_ +..I/'i_:,_l +.Ji.

Using (3.20) once more, we find:

_' _T-+'= [,,, (1 + el,) + n,ei, I L_I+

+ ln,el_+ n, (I + eh')] _-I- (_,"_ + n,,,_) _el ;
(17.43)
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+e=lltgl--_ 1,2,
_- (17.44)

_(l-t-el3Be_+(1+era)'Sen'- e,l_e2,1' -- e2,_e,2 .'t

We have thus obtained the necessary expressions for all the quantities occurring

in the variational equation of equilibrium (10.14) for the state ox:

¢o c (17.45)

=i! _W_ A'A_d"d""

By successively transforming this equation (as shown in § 10) and equating to
zero the coefficients of the virtual displacements, we obtain the equations of equi-

librium and the static boundary conditions. We shall now write down the same equa-

tion for the equilibrium state o*. For this purpose we replace everywhere, in

! and w I byu I] + u 1, uI2 + u 2 andw I + w, retainingthe previous formulas, ul l , u 2

the squares of the additional displacements. Since e*j and w* i are linear functions

ofu_ +u i andwI+w, weput:

e,'/= e[j + e,/; _i* _ "I + _'"

Introducing these and (17.12)-(17.18) into (10.11), we find

(17,46)

where

w'=Ki(,h+,h)i,h+,_) 0 ,)(,h,h+ [ '

- 2,h._)] + D II_h+ ,h) (,'. + _,) -

(,,, + _,} + ( ,, + ,'_) (,i'_+,i_) -t/7'=K[_ ' ,'' ,_

I - i tl ' I a " I--(t --,)(,_:._+._,n + .u ._- .u - 2.h.,2) +

+V [{ (,;,+ _;,_+ (,',,+,'-)(*;',+ _,_-

¢4,,_ +,l,,i', +,,, ' " ].(1 "t)
J

(17.47)

When performing an infinitesimal virtual displacement of the state a*

8v _ e,6u, +_Su, + m_v,

we have to vary only the additional displacement. Here ISW i = O, and bW may be

determined from (17.37) and (17.38) after replacing _el) and t_,_ I by 8ei_ and _m i

respectively.

The surface force for the state o* is

x _= x, +x,*=X,e_+X,_,+x_+
(17.48)
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Consequently,using (3.19) and (3.20) we obtain the expression for the elementary
work of the surface load In the vlrtual displacement _V:

X*_v = IX,,-I-X,, (I-b el,+ e:2)-_-X:, (_, + e2,)+

+ X. (El+ _.')16.,+ ix,.+ _%, (el.+ e.) +

+ X,, (l+ e" + ._) + X. (_ --E,')I6u.+

+fX,, + X,, (-I+ -,)+X= (_4+-2) + X. (_; + e,')]_.

(17.49)

The external contour force for the state o* is

$" = ¢.,e. + ¢,,e-_+ ¢,.Fn4- %,eq" - 'l,:,-e,*+ 'h_ _, (17.50)

and the elementary work of this force may be determined from formulas similar
to (17.49).

We obtain further

where

n%ra*=ln,(l +el,+e,,)+ ,fe_,+e_.,)J_(E,+E, }+

+ [.,(eL + eu) + .=(I+ e',+ e=,)l;.(E.'+ E_")+

+in, (®', +®,)+ n_.(,._ + ®_l_ (E,' + E,_.,

(17.51)

aE,'= el_o,,-r ®._e,,- a®,- ei_*, ,o:ae._,;

'_E,' t J .= --el2ae,,--e2,_,,+ (I-r e_) _e,,+ (I+ e_,)_e22;

_Ea"_ et]_e=:+ e2_el;- ei_esl- e_l_elz.

(17.52)

If the shell is also in equilibrium in the stale o'*, then in addition to (17.45)

it is necessary to satisfy the variational equation

i_X*_da-._ S(_*av-]-On * m*)ds-
(,) C

"- 6 _]A ,A= ( W' -_-W") datd: = O.
1=)

(17.53)

As may be seen from formulas (17.47)-(17.t2), both sides of this equation

contain quantities of the first and second order of smallness with respect to the

infinitesimal displacements u and w and their variations. It may easily be seen

that the quantities of the first'order of smallness ,'ontain infinitesimal factors only

in the form of the variations 5u i and 5w, the ccefffients of these variations being

equal to the corresponding coefficients of _u! an _ 5w! in equation (17.45). Whence,

remembering that we are considering arbitrary v: riations of additional displacement
which occur without disturbing the geometrical re ations, and that the state o [ is a

state of equilibrium, we conclude that the sum of he first order terms in the left-

hand side of (17.53) is zero. Consequently, ff we neglected the quantities of the

second order of smallness we should obtain, according to (17.45) and {17.53), the

same equations of equilibrium and static boundar_ conditions which characterize

the state of equilibrium o_ but do not enable us to estimate the stability of this

state. Equating to zero the remaining terms in the left-hand side of equation

(17.53), i.e., the sum of terms of the second order of smallness, we obtain the
equation:
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_.._[(X..,e. Jr X._:e.. + X._F_') _.,_+ (X2,e,: Jr X:_e. Jr X,:E..') _a,-F

+ (XT,,,+X,,®2-FX..._E,') t_] d_ + _[(%]e,t+¢,=e2, +(I,,_E,') _ul+

c

--t- (¢_leJ_ -{- Cne_2 -{- _.._E_') _u_ Jr (_]w, nt- _n_,, Jr ¢28Ea') _w] as +

+_ {(n,e,,+n_ee,)SE,'+(n,e,..,jrn_.e,..)_E,'+(n,,o,+a_,)_e/+ (17.54)

c

+ In,(, + .1,)+ ..,',] + l.,e',,+ n.(, + eg),,e,-

®t I _ "}ds-- _ W"AiA.,da,d_2_O4-[n, ,-.}-n,_] E, SS " "

i,)

This equation gives the energy criterion for the determination of the limit of sta-

bility of the equlllbrium of the ehell*,

Thus, when the critical load is reached, the variational equations (17.45) and

(17.54) must be satisfied simultaneously. For solving them approximately by the

Ritz-Timoshenko method, we sha]l take at first the analytic expressions of the

projections of displacements in the state _I

= C,,u,,J¢-C,_u,,+ ........ C,,w,+ C._, Jr (17.55)

where each of the functions u! and w! satisfies the geometrical boundary conditions,
]j J

and C!i are the amplltudes of displacement which we wish to determine. Besides,

we shall assume that these functions are dependent on some parameters, m, n, p ....

which have also to be determined. Substituting (17.55) in (17.45), using the expres-

sions for virtual displacements

, Ou"kO---_-_mJr...) .... (17.56)'_",= (.',. _c,,.+ cl_

and equating to zero the coefficients of the variations _C[k , 8m ..... we obtain an

infinite system of equations for C_k , m ..... corresponding to the state of equilib-

rium of the shell.

Proceeding analogously for the determination of the additional dlsplacements,

we obtain from the variational equation (17.54) a system of equations for the para-

meters C_k, m, n ..... which characterize the displacement at the beginning of the

loss of stability of the state of equilibrium a I. The condition of compatlbility of

these equations gives the required relations between the critical magnitudes of the

load parameters. In concluding this section, it should be noted that the fundamental

equations of the theory of stabillty of shells derived here are highly complicated.

This is because we tried not to restrict, for the present, the range of application

by retaining the generality of the deductions. In particular, we did not make any

assumption on the nature of the deformed state and the state of stress of the shell

before the loss of stabillty, assuming that the state o [ is necessarily a membrane

state which results from the initial state ,_ by large bending.

* The energy criterion for the stability of equilibrium of an elastic body has been

formulated by E. Trefftz in his works ]V. 16/ and /V.13/, assuming that the

external forces are independent of the deformation. This criterion was devel-

oped for shells in the monograph /0.13/.

The generalization of this criterion for the case where the external forces depend

on the deformation has been given in /0.14/ (see also /V.14/).
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18. The Stability of a Non-Shallow 5_ell under Small Bending

Let us assume that the contour forces and :he surface forces acting on a

shell in the state o ]do not bend it, or bend it very slightly. Then

1 [ I

and the first state of the shell is a membrane state. This state may be determined

from the linear theory of shells in membrane sta_.e

,_i_,_,; 2=l_e h+e_, 1,2; (18.2)

('_T' ' --'A'T _ ' -- i = T_ _ ' _ _*,2; (18.3)_2 u).l-r-*, i 2=LJ-1-Tt2AI.z-- 22AJ.I-_-AIA2X_O

I I
k. r. -t- 2J_,=T,= 4- kzzT_ -- X_ == O. (18.4)

where e!j and T_j are given by (17.3) and (17.6). The additional deformation of the

shell with buckling is characterized by additional elongations and shears e_) and

by additional changes in curvature xlj, whose expressions (17, 13) and (17.17)
become less simple.

Since, in this case, according to (17.3) and (17.18)

neglecting (as in calculating the change in curvatu2e), the elongations and shears
in comparison with unity, and using (18. I) and (I_. 2), we find

=_'-_ "l, _2,=,_,=, _'l, _ el, -k e,ze,214_ ®,l '=J, (18.5)

where x i and xl2 are given from (17.16). The approximate value of _12 may be

calculated, as in the general case, from (17.13).

The equations of neutral equilibrium (17.26) and (17.27) can also be simplified

because there it is possible to neglect the terms c _ntatning x]. and N! and to put
t _NNi _ t , where N i are shearing forces expressed in terms o_ xij by'the linear

formulas (7.5), Besides, in the following we shall assume that the

hydrostatic pressure (17.24)is the onlf surface load. Therefore,

with small bending the equations of neutral equilib+ium become

T' T' _ r[A_==T_lJcA;(I -I'-'_) T]',].,-}-(A, =,),=-t- ,2A,.2 T_.(A,e,,,._.j --

-- T_[A, tl _L =_)l.t "_'AtAa(N,_, "JcN_,,)-_- 0; (18.6)

T'[A,¢,,Td + A, (l + .I_,)T_,I,+ (A, ,,),,+ Zt_A,1-- Z'h(A,e,,) (18.7)
- T_',iA, (1 + ,,_)1=+ A=A=(N,a,=4-N: _-a)-- 0;
(AzN=).z + (A,N=) =-- A_A=( _, x. + t• 27 _2x==-_ T_ .z= _- (18.8)

+ rt', k,, + 2T;= k,, + r;a/_=) =0

With the loss of stability of the membrane state of equilibrium, a transition occurs

to s state of equilibrium for which the bending stresses begin to play a considerable

role. Therefore, the additional bending elongatior s cannot be small in comparison

with the additional membrane elongations. On txis basis we assume that
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txN=, (18,9)

where z and s are the maxima of xij and _i) respectively.

Let A_Az_L. J//_ _ ip _<_ ], (18.10)

(where L is the characteristic linear dimension of the middle surface of the shell).

In this section we shall assume that L _R (R being the smallest of the R i ), (18.11),
l. e., we consider the stability of the entire shell or of a major part of it.

Evidently, owing to the smallness of the bending in the state o 1 the quantities

characterizing this state vary smoothly or in particular are constant:

I I t I
=u.,._ _, = t,2.Tq._Tu i,j,m (18.11)

Let the quantities characterizing the additional deformation be varying upon differen-

tiation with respect to the dimensionless coordinate aj, so that

, , i i --K-_.l _ _#' r_ _, %._ _ =11'*p , -.. =p <_ 1. ( 18.12 )

where )_l and )'z are real numbers.

Let us consider the various possibilities.

A. Let

k,_>O, k=_O. (18.13)

In other words, we assume that the parameters of the additional deformation increase

considerably upon differentiation with respect to at least one of the coordinates.

For a non-shallow shell such a deformation is possible when the surface a* divides

into a large number of "waves' each of which may be considered as a shallow shell.

Therefore, the additional deflection w is large in comparison with the components

of the tangential displacement, and the rotations ¢,)_are large in comparison with

the elongations and the rotations e _2 and ezi.

This important case of loss of stability will be examined in detail in the fol-

lowing chapters. It should only be noted here that in this case not only the shear

may be neglected in comparison with unity--as we did in setting up the general
theory--but also the elongations. Thus, after making all the simplifications which

can be used for shallow shells, as we did in § 15, we obtain the equations of neutral

equilibrium* :

(A=T.),_ 4- (Ai TaL),=q'- T_zA=.=-- T=2As.I = 0 1,2; (18.14)

D&&= Jf- r_,_,-_- 2_=x,=-_- rJ===_-_- rn_,,-_- (18.15)

"l- 2 Tt= k]_ -I- T= k=== O,
where

T. == K(=_ 4- v===), Tj= = K( _ -- v) =_2, =. = e.,

2¢1== e_=+ e_, (18.16)

and xij are given by (15.7).

* See monograph /0.13/ and the articles IV.4/ and ]V.1].
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S. Condition (18.9) may also be satisfieC for the case when

xz<0, X:_0,

(or X_= 0, I=<0)
(18.17)

i. e., when the parameters of the additional deformation decrease considerably

upon differentiation with respect to a 1,

As a concrete example, let us consider the stability of a shell of revolution

referred to the lines of curvature and let the lines _2 = const be the meridians.

Here A1,2 = 0.

The equations (18.6) and (18.7) may be replaced, in the first approximation,

by the equations (18.14), from which we obtain at estimate of the order of magni-
tude of T..:

D

r|l.i _ T=I.2._ Tza, rfthl_ Tit.J _ r_t

or

r=_ r_ _,, r== r.,- T,, ,_x,, r,_ ru,; _,.

Let us assume, for instance, A,_ I Then
2

r= _ T,t "o, T= << r,,

Therefore, from (18.16), in the first approximati)n

(18.18)

Consequently,

(18.10)

Here x22 is the largest of the ×i)" In order that conditions (18.9) should be satis-
fied,

t_,=_,,,. (18.20)

must hold, where

(A_v,}., << (A_N=)_. (A, N,_a _ D ,_ _ Et',= -- e_n (I 8.21)

Let us consider two further possibilities:

1. Let kx2 = 0, kll = k12_1/R. Then(18.19}. (18.20), and the condition of
compatibility (3.32) will not be simultaneously satisfied. In fact, the left-hand

side of this equation is the largest quantity (of an ( rder of magnitude t ) while

its right-hand side equals 22

In other words, it contradicts (18.20)

2. Let k.2 = k_ = 0, k22_l/R, i.e., o is a developable surface. Then con-
dition (3,32) is satisfied, but the first of Codazzi's equations (3.35) can hold only

for A 2 = const.
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Thus,thecaseconsideredmayoccuronly for the loss of stability of a cylin-

drical shell, for which

This is of the same order of magnitude as (18.21), if

t/R _ _2,., x, = --1/2; t)R _ ,a.

Besides, according to (18.8), (18.21), and (18.20)

if with the loss of stability

We also find that for the critical load, we must have

r,,--,_, ,p -- R ' 12-- R (18.22)

On the basis of this analysis, the equations (18.6) and (18.7) may be simplified by

neglecting the underlined terms like r12 e._ and T_,_. *

The validity of the conclusions, which we arrived at for case B by analysis of

the orders of magnitude, will be corroborated in the following section by a more

precise examination of the problem of stability of a very long cylindrical shell, i.e.,

the special case for which, after neglecting the shear in comparison with unity, it

is necessary to retain the squares of the elongations and the shearing forces in the

equations for the tangential components. We therefore consider that the theory of

shells, and especially the theory of stability proposed above on the basis of the

assumption that in the analysis of the state of stress of the shell the shear may be

neglected in comparison with unity is justified.
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S19. TheStabilityofaLongCylindricalShellofCircularCross-Section

Letthepositionofapointonthemiddlesurface be specified by the axial

coordinate x = Ray and by the polar angle 9 = a 2. Then the line element on the
surface o is given by

ds == dx 2 4- R 2d ol = R_ ( d=,l + d=_=).

Therefore, in this case,

A, = A_ = R; k,t _ kl_ = 0; ;11 = 1/R. (19.1)

We shall examine the stability of a shell under a normal external pressure p

unHormly distributed over its lateral surface, an axial compressive force T I

and a shearing force St, being uniformly distributed over its end sections a_= 0

and _= 1JR. We shall neglect the influence of the nature of securing the edges
because of their remoteness. Evidently, from (17.8) and (17.9)

T]t=const=--T J, T'r,=T_=S'. T_2= pR,

_. _ u[/R = const, t_ = (u_._+ _A : R = const.

wfsconst, u_.2=O, u[,:=Ret_o. (19.2)

Consequently, according to (17.13) and (18.5)

,,',= 2,1_e,_+ e.; '.4 = e.; _'_'I= "2,,._+ .l,e,_ ÷ ,_e.;
Re_2 ---- u_.2-{- ¢v, 2e_2R = u2.t -}- uL_, Re_ = ul.,.

(19.3)

(19.4)

From (17.16)

_.= =./R', _z=(u:,-¢vn)/R:, ,:.=(u_2-w_)/h = (19.5)

Taking into account (17.6), (17.14), and (18.16), _,e introduce (19.3) in the equations

(18.6) and (18.7). We shall neglect the uaderlinec terms and also all the cubes of

elongations and rotations and the infinitesimals o: second order. Thus, from (18.6)

we obtain the approximate equation:

Tu,i + T21._.- r i en.t + K12.12e,l + _ (e. + * e,.}J.i 4"-

+ _ {.he,, + o_,,,1._= o.

But

therefore, in neglecting _il_ in comparison with mity, it is necessary to retain only
the largest among the small terms of the equatio]t, namely, the term

K_t--*) (tl_e_ t +_ea=)._. In view of our considerations of _ 18,
2

I [....... ,, r_, = K (4_+ • ,_)= K(_ --,,')4,,
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wefind:
, TI

- J K(l v)!i+,)t.e,2.2_ _-e_2a.K(l _ ") (E'_=e:,q-_2_ e_:)2 = 2

Consequently, the first equation of equilibrium becomes

i T_
Tlll -_ T2t,2 q- _- elz2 = 0. (19.6)

In the same manner, we obtain the second equation

J T _ +Nz = 0. (19.7)

We replace (18.8) by the approximate equation

Nm + Vu.2+ R(I" xi_ - 2S I _t._ +pRxm) - raz=0, (19.8)

Introducing (19.4) and (19.5) in (19.6)-(19.6) we obtain a system of three linear dif-

ferential equations for u _, u 2 , and w. We shall assume that the end sections of the
shell are hinged to frames which prevent displacements u z and w in the plane of

the section, but do not hinder the axial displacements u 1' i. e., we shall satisfy
the boundary conditions:

u:=_=u,_:=0 for a_=0, al=l/R. (19.9)

These conditions and the equations of neutral equilibrium may be satisfied by assum-

ing, for S 1 = 0,

//I = A cOS mat cos//a2, tt_ _ B sin raal s[l] r8_%

w = Csin m_tcos n*_, (19.10)

where n is the integral number of waves that are formed on the periphery of the shell,

m = k _.R/l (k being an integer)

If SI _ 0, the equations of equilibrium can be satisfied by assuming:

u_Asln(ma1+nal),u2_Bsin(m_q_l_rt_2),_Ccos(mat_l_n_)" (19.11)

In this case the boundary conditions are not satisfied, which is not very important

if I/R is large.

In both cases the introduction of (19.10) or (19.11) in the equations (19.6)-(19.8)

leads to a system of linear homogeneous equations for A, B, and C. The condition

of compatibility gives the required relation between T 1, S l, p, m, n, for the deter-
mination of the critical load. A detailed study of this relation may be found, for

example, in ]0.13] and /0.16]. It is shown there that the corresponding value of m
for the minimal load is so small that m 2 cn 2, if the shell is long. Therefore, to

simplify the calculations, we shall neglect m 2 in comparison with n 2 in the second

order terms of the equations (19.6)-(19.8) containing the flexural rigidity D or T I
as factors. We shall assume, in particular, that ij

Mum _ D (x. +, xa_),u -_ 0, M]zt2 _ D ( 1 -- v) in,a2 _ 0,

All the same, we should have introduced these simplifications for the determining

equation, which becomes, after these simplifications

E.tm ¢ -{- Dn 4 (n a -- 1)1[R2 _ T [ tn*n _(n* q- l) - 2S l rnn| (n t -- [) +
+pRn*(n 2-1) (19.12)
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In order to calculate the order of magnitude of the quantities ei in the equations
J .

(19.6) and (19.7), retaining the principal terms we find the approximate equations

A(rn2+n')2=- C (_ rn_ rnn=),

B (rn2 + n2)_ = - C[(2 if- _) r_tn + ni 1

where

Re,,---- u2, = 8 m cos (ra_, + a°_) = B m wlC _ - _,m/n,
Re, = uu.i _ A in cos (maj -I- ha2) = A raw/C _ tn_vu/nz,

Re== = u2a + _ = [an + C_ cos (ms, + n*=) _ m_lr_la =, (1 9.1 3)
2¢_R = u=.t q- ul.= = (An -}- Brn ) m/C _ -- (2 "i" 2v) m'rv/n_

It can be seen from these that the shear is reall 3 small in comparison with the

elongations, as we had assumed in the special case considered.

The elongations are also small in comparison with the rotations ell and mi.
However, a systematic neglect of these may lead to a considerable error because

_ t]" { _ ( 2 _ I 2 1 _'21) 1 _' -- d21.1 = -- l_li,21 = -- _11.2. . -

Let us examine a few special cases.

1. Crumpling of a circular cylindrical shelt under an external normal

pressure.

Let T I = SI = 0.

According to (19.12), m = 0 corresponds to the minimum valueofthepressure

p, i. e., in this case the approximate solution co:ncides with the exact solution of

Maurice Levi /V.12/ for a circular ring:

p_= 3D/R I, n = 2 (19.14)

2. Buckling of a shell*. Assuming S [ = p = 0 in (19.12), we obtain

T= -- L_trat __ Oa=(_ z -I}=
¢_(n=-I- l) R=m_(ns+ I)

If n > 1 the minimal axial force will be reached fcr

and will be

n _ 2. m, a = Stir 1/3(1 -- ,z). (19.15)

T_ = 0.2 I/'3-Et'/R _ _-_2. (19.16)

For very long pipes

rtK =1, Tl_ Et,21_l_12. (19.17)

i.e., we obtain Eulerts well-known formula for he buckling of a pipe considered

as a beam with hinged ends.

* This problem has been examined by S.P. Timoshenko

(see [V.6] or [0.16]).
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Wehavegeneralizedthissolutionforthecaseofalongshellofanelliptic
cross-sectionofsmalleccentricity*.It followedthatthecriticalcompressive
forcefor ashellwithanellipticcross-sectionof infinitesimal eccentricity is:

where T I is the critical force for a shell of circular cross section with R = a,

ae=_ z (a being the semi-major axis of the ellipse)

3. Twisting**. In this case T l = p = 0. From the condition of minimum

load 0S' .Ore= Owe obtain:

m2,=a'(n '-l}t/6Ry'l-_, ,=2,
(19.19)

S L,= _ Et't,/R'r,(l -,,)'I,.

For a long shell with an elliptic cross-section_' * * of small eccentricity

S_.=S'_(14-+ea),

where S 1 is the critical force for R = a.

As may be seen from (19.15) and (19.19),

-R 1/-L

(19.20)

(19.21)

The shells which satisfy this condition will be called "long shells".

Using the solutions obtained for the particular problems we shall convince our-
selves of the correctness of the magnitudes of the critical forces (18.22) calculated

earlier from qualitative considerations of the equations of equilibrium. We shall
also use these solutions for a more complete elucidation of the peculiarity of the

types of loss of stability of shells considered above.

According to (19.13)

Et Et m_z, Et
r,, = 1----g(''' +'`) = _" -;;-' r,,.,- _ _.

El El; m_ 7' gt

Et ,Zt m_
7'n= _ (*'_+ ,,e.} _, R .'. _ rz""

(19.22)

Furthermore, by (19.13), (19.15), and (19.16)

'_ See /V.3[.

** This problem has been examined by Shverin in article /V.8].

*** See /V.3/.
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7,.j,pizt + £1 'a wm + _-i _rl £f
R 2 I.P meu+' eJi+* +'R" _'

_++ D,,+___.____Et'., +J" ,,.,+,x,.
R R I R

Consequently, all the terms in the equatiot_ (19.6) are quantities of the same
order as Etm3w/R. Similarly, all the terms in ;he equation (19.7) are of the order

of EtmCw/R where m _ _ In this case it is _herefore not possible to neglect

the "small" quantities. We observe that, in addition to these, in the equations

(19.6) and (19.7) one also often retains terms which are really small*. Such a

term is, for example, SXe,2 ' , in equation (19.6) which, compared with the principal
terms of this equation, has a factor of an order of magnitude m 2 or t/R.

The terms dependent on the normal pressure in (19.6) and (19.7) are still less

important. But they must be retained in (19.8)because according to (19.5):

Consequently,

TIIll _ sliil_tlJ_ll .

It maybe seen from this analysis that the "heory of shells, based on

the systematic neglect of the elongation and shears in compa-

rison with unity, may lead to substsntial error in the value of

the critical load, only for the loss of stability of a long

cylindric al she 11 under axial compression, because in this case the principal

terms in the equations of equilibrium cancel each other, and the approximate equa-

tions lose their validity**. The validity of applying the equations of the theory of
non-shallow shells to the study of the stability of long cylindrical shells has to be

especially examined if one wants to express the +lastic forces and moments in terms

of the deformation by first approximation formul Is of the type (17.6), as these

equations are obtained by neglecting the quantities of order t/R in comparison with

unity. On comparing these approximate formula3 with the exact expressions (0.19)

for moments and forces, or with the expressions derived on the basis of the Kirchhoff-

Love hypothesis without any simplification (0.15), it may be seen that the expression

for T12 contains, in addition to the principal terr_ we have retained, also terms as

small as raN2, while T22and Til contain also terms as small as N 2. For the case

under consideration, the principal terms cancel u.ach other only in T22. Besides,

the small terms in the expressions Tli ,1 and TI2 2 are of the same order as mN.

In T 12, _ they are still smaller, being of the order of m2N2 .

Therefore, the errors arising from the ust of first approximation formulae

for these quantities are smaller than t/R as compared with unity. On the other

hand, the error in T22,2 in equation (19.7) is of tte same order as the other terms
in this equation. But this fact does n_t lead to ar error in the equation for deter-

mining the critical loads, because the same error in the expression T__ also enters

the equation (19.8). In order to avoid these error.s, it is possible to e_minate

T22and T 12from the latter equation. In fact, after differentiating equation (19.8)

twice with respect to a 2 , adding to it the equaticn (19.7) differentiated once with
respect to a2, and afterwards subtracting (19.6) differentiated once with respect

to ai, we obtain, instead of (19.8) the equation:

* See, for example, equation (63.1) in /0.13/, )r equations (2.54) in /0.16/.

** We have pointed this out in /V.4/.
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N_ _- N2._ + /_ITZ ( _m_ -- _- ) --

-- 2SI xJ_,t2 + PR_'22,_]-- Tll.u ,----0o

(19.23)

By substituting here for T its approximate expression (19.22), we may only in-
troduce an error which is _i]m 2 times the other terms of the equation. Thus, we

obtain an equation for the determination of the critical loads which is accurate as

far as t/R in comparison with unity,

In the following we shall examine the stability of shells of medium length for

which m = nR/1 is not small in comparison with unity, so that the particular case

considered above d3es not apply; therefore, equations (19.6) and (19.7) may be re-

placed by the approximate equations (18.14) which are simpler. Then a large

number of waves are formed by buckling, so that a non-shallow shell is divided
into shallow parts to which the theory of stability of shallow shells may be applied;

it is set forth in detail in what follows.
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ChapterVI
THENON-LINEARTHEORYOF:{HALLOWSHELLS

§20. ShallowShellswithInitialDeformations*

LetAi andki] bethecorrespondingquantitieswhichcharacterizethemiddle
surfaceaoftheshellbeforedeformation,referredtoorthogonalcurvilinear
coordinatesa i. It is usually a surface of a regular geometrical form. During the

manufacturing and erecting of the shell, initial deformations occur inevitably, lead-

ing to deviations from the surface a. These irregularities of the middle surface

may appear prior to the application of the surface load or contour load, or owing to
a non-uniform temperature distribution in the shell. In this case, initial stresses

may also appear (for example, thermal stresses). Irrespective of their origin,
these deviations from _ will be called here initial deformations.

Let us consider that the surface (J transfori_s into the surface o ° under the

initial deformation. We shall denote by u ° , u °, end w ° the comp3nents of the

corresponding displcament. We assume that this displacement is at most of the

same order of magnitude as the thickness of the slell.

We also assume either that the surface a is shallow or that the initial

deviations of (J are rapidly varying so that d ° divides into shallow parts.

Thus, the slowly varying irregularities are excluded from our considerations,

as for instance the slight ellipticity of a cylindric_tl shell with circular cross-section.
This limitation is not substantial from the point oJ view of the applications of the

theory, the more so as it is seen fr,om S 19 that tlte slowly varying irregularities
have little effect on the state of stress of the shel:. The limitation mentioned is,

however, important for the simplification of the theory because it enables us to
neglect the effect of the tangential displacements "t on the initial rotations oJ°

and also the changes of curvature x0j : conseque)_tly, these quantities and also
the elongations may be determined by the formula_ (15.5), (15.6), and (15.7) of the

theory of shallow shells:

*,o=_,'_:A,, ,? =_. 4-±_ ' 2,o:- o o .o,_o

A,4,:,_ = -- A,_,°, - ®_A,..

A,A,, °, = -- A,_.,-I- _A, , ], 2,

(2o.1)

where e ° are quantities determined from formula_ similar to (3.5). We note that
initial b_nding displacements which cause initial membrane stresses are also

admitted.

Let u{, u I, w[ be the projections of the dis }lacement due to the load on the
principal directions e t, e 2, and _ of the surface (J. Due to this displacement _0

* The theory of such shells has been given in a r_ther different form in /VI. 1/.
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transformsinto 01 . We shall assume that there may be a loss of stability of this

state and a transition to a new state a* with an additional displacement, whose

projections u t, u 2, w on the same axes are infinitesimals. Then the projections
of the total displacement0 the corresponding elongations and the changes in curva-

ture will be:

(20.2)

The quantities e]j and el) may be expressed linearly in terms of the corresponding
displacements according to (3.5). The elongations before the loss of stability and

the rotations which depend on the load may be determined by the following formulas:

El. -- 1 [ full 2 _- too 0 in-e.+T , ,,,

®_--'w I A_ 1, 2
I-- ,/

+_.

(2o.3)

We also obtain the additional elongations _j + e,"j for loss of stability, where

0 I.'. = e. + _: (,_,+ ,_,),
2G = e,, + e,, + ,., (.._+ ,4) + .+,(,_?+ ®b (20.4)

are first order infinitesimals, and

,, ._2, 2.,.2=row .tjl

are second order infinitesimals. They may be neglected in setting up the equations

of equilibrium, but are to be retained when setting up the energy criterion for

stability.

We shall determine the changes in curvature ×i.jj and xjj from linear formulas

like (20.1) replacing +,0 by m_ and +oi respectively.

The membrane forces and bending moments due to the load before the loss of

stability are respectively

T:,= X¢d, +.*_1, r:. = JC(t -- .}.h,
(2o.5)

,.V/I,_Dfxti +vz_), /_a _ D(I -- _)x'tz 1,2

The additional forces and moments will be given by similar formulas:

T'u = K(,, -+- *'+;2)..... M'_a = D(I -- ,) ***. (20.6)

It should be noted that when deriving these formulas we neglected the elongations in

comparison with unity and assumed that the shell is shallow before and after the de-
formation, or that it divides during deformation into shallow parts.
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The equations of equilibrium of the interna_ forces and moments for the initial

state of deformation will be obtained from equations like (15.8) and (15.9), assuming
that the surface forces equal zero:

(A, r,_,), + (Atff,),, + T_A,,_ -- ;,_A_,,"° = 0 1,_,
4----

(A,N,o)_+ (A,N,')., -- A,Ad_, k?, + 2r._,,°°+ r,_°k;_l= o;
0 0

kq = kq + ,j] ;
(20.7)

AiN,' = D (_, + ._)_ = --D(&_)._ i _ I. 2. (20.8)

We introduce the force function _J0 by the formulas

Aa TOt == i*_2]As)J -{- Aa,_°.l/A,S 1,-"2,

AtA_T_n o A o= -- _.,,+ A,, ¢,/A, -_ ,.,+.,IA,.
(2o.9)

Then the equations (20.7) will be satisfied in the assumed approximation and the

function _0 must satisfy the equation of compatib;lity

Aa,o-Etl=_- o o o 2xo2,,,lffi (20.10)

If the stresses appearing in the shell during the manufacture and assembly are re-

moved by annealing or by other methods, but the nitial deformation remains, then

_0, Nt'=O,

and the equations (20.7) are identically satisfied and (20.8)-(20.10) become mean-

ingless. In this case, the irregularities are resid.lal and it may be considered that

they appeared after a single normal displacement w, assuming u 0 = u 0 = 0.

We shall determine the displacements due t_, the load by equations similar to
(15.8) and (15.15) for the state of equilibrium _t, taking (20.7) into account

(A, _,)., + (A, T],)., + Tlu_4,._ - T_4z , _ A,A_XI = 0 1_2; (20.11 )

o_= _+_I,+ 0 , _= z=+

+r_,/d,+ i , , _ i2Tlz k_ + T./*n -- Xs _ 0,

kl_ = I_t + "_1+ *tee, A,N_ = -- D(A_').,, (20.12)

where T!. are given by (20.3) and (20.5).

The additional displacements u i and w, whic _ appear with the loss of stability,

will be determined from (15.8) and (15.9) assuming;

r_ = _+ r_+ r;j, k,j = k,j+" ,,,° + _+.,j.' (20A3)

Thus, from equations (20.7)-(20.12) we obtain the _quattons of neutral equilibrium

(A,r'u)., + (A, r_,)., + _2 A,.,. - T'.,A,., +

+ A_,_,(_ - x_)= o 1.-'2,
(20.14)
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D_ + (g, ÷ rh) .. + 2 (r_,+ r[2)_,, + (_+ z_n)_. 4-

+ r_, kl,+ _r',, kh + r;, g_ - x;+ x', = o, (20.15)
A_Nj' _ -. D (A_).i i = 1, 2.

If the shell has no saddle points, it is more convenient for applications to o
consider the state of stress o ! as the sum of a membrane state and a state of stress

of the same type as the edge effect. We shall denote by u'_B, u_s, w m and u_K. u_K. w,,

the components of the corresponding displacements. Thus,

UI=UtIB+U,", _j= TIB÷T_, .,B ... m__ iS. (20.16)lu _ ,'k(¢tl t ve_}.

We shall determine the elongations corresponding to the membrane state from the

usual linear theory. The elongations due to the edge effect will be given by formulas

like (20.3), replacing u_ .... by u_ .....

We shall neglect the changes in curvature in the membrane state. Accordingly,

[iwill be given in terms of wIK by formulas similar to (20.1). For the membrane
deformation, we have the equations

,s r,S_. ,s T_A,.,+A,A,_=O ;:'_,( A,r,,)., + ( A, ,,,., + T,,A,., --
_-- (20.17)

[B , 2TIBk . TIB_T, Lkzl T _2 1 ' T 22_ _ X_ _ 0l

Using (20 16) and (20.17) we may derive from (20.11) and (20.12) the equations

( a_),-t-(A,r,,).=+. " r,,a,.,'_ - r_,a=.,_O 1:_; (20.18)

+ 2r,, ,,_+ r,i _ + r,, ( _?,-t d,) +

+ 2r.?( .?.+ .'.) + T,_s(._:+ _g)+
(20.19)

+ rl_'kh + _ r,___I_+ r,,'*k,_'= 0

The equation (20.18) _nay be satisfied by introducing the force function _JK accord-

ing to formulas like (15.11), i. e., by assuming

A Ix I_} A A IK _.:r,, =(, .... )...+ ,.,_,/A,,
(20.20)

K K I_, AA1AzT_"_--,_.I2-_-A2.1q).__/A,-I-- Al_._,.I/ _ 1,2.

From the condition of compatibility, similar to (15. 16), after replacing

ki_ by kij + ×i_ the equation

aM/'_----Ft[,,_"÷2x,_k_' o .... ' ( k_ + ,::) -- x:: k,,] ---- 0.', o (20.21)

The same equation may also be obtained from (15.16) af*er replacing _ by ,_o+¢_
o

and ×,) by ×i] + _ _ and subtracting the corresponding equation for the initial state*.

The equations (20.19) and (20.21) form, with (20.20) and (20.1), a system of

two equations for _. and _J_.

If the shell is shallow and X_= X_ = 0, we may introduce the force function

without resolving the state of stress _ into a membrane part and a part similar

to the edge effect. In this case, we may satisfy the equations (20.11) by introducing

a force function _ according to formulas like (20.20). In the equation (20.21) we

* The equations (20.12) and (20.21) for shells without initial irregularities have
been obtained in /VI.12/. See also /VI. 13/.
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assume_'*=$' and instead of (20.19) we use the initial equation (20.12). In parti-

cular, with u_ -----u_ _ w ° _ 0 we may derive from these the equations (15.15) and

(15.16). The equations of neutral equilibrium (20.14)-(20.15) may also be simplified

if the surface load is self-adjusting, i.e., if the conditions

X:=X_, i= I, 2, 3, (20.22)

are satisfied. In this case the equations (20, 14) may be satisfied by expressing the

additional membrane forces T'i_ in terms of _' by equations similar to (20.20):

(20.23)
A,A_T_'2=' - 'V.,, + A_., ,_'.#a: 4. A,._#',_A, 1,--2:

Here the condition of compatibility deriving frorr. (20.21) must be satisfied after

replacing _* by _'*+_' and ×D by ×[j + ×i) and subtracting (20.21) from the
equation thus obtained. We find

_,' - Et (2_,,_I_- ,,,k_, - ,,,kl,)_ o
(20.24)

Introducing (20.22), (20.23), and expressions lik,, (20.21) in (20.15) we obtain one

more equation for w.

If the initial stresses corresponding to the initial deformations are zero, it
must be assumed that T 0 _- 0.

Let us formulate the static boundary conditions. Just as at the end of S 15,

we shall consider two possible cases.

A. Let us assume that the edge contdur is free. In the state _I the contour

will be under the action of external forces and moments ¢_. @z _ and _. At

the contour the elastic forces and the moments must satisfy the conditions obtained

from (15.17)-(15.19), after replacing there the qvantities marked by an asterisk by

quantities with the index I.

Let the contour load and the surface load b' self-adjusting so that their pro-

jections on the principal directions of the deform :d shell remain the same after
the loss of stability. Then

_,l_, + $,, _,'_0 ..... (20.25)

where _,' are additional external loads.

Introducing these, and also
I • ,I i

/',; = T_ + r¢, .4.f_,= ,4,u + A41,

in equations (15.17)-(15.19) and taking into accourt the static boundary conditions

for the state ol, we find the required boundary conditions for the additional forces

and moments. If the edge contour is given by the line at= const, the static
boundary conditions assume the form of the corresponding conditions in the linear

theory

r_,:0, rh=0, N,'=0. M,_=_). (20.26)

It has however, to be remembered that the additional forces depend b_th on the

initial deformation and the initial stresses, accor _tng to (20.4) and (20.6).

B. Let us assume that the external contour load is given in terms of forces and
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momentsalongtheprincipaldirectionsoftheundeformedshell,whichwill bemarked
withthesuperscript "H". In other words, we shall assume that there are given the

quantities @_", _", qs_ and _" which remain constant for an additional deformation.
Then we shall also refer the internal forces and moments to the undeformed state,

using formulas similar to (15.20). Thus we have for the state o ° •

0m ..... _i_ T_J2_2, (20.27)r,j __4, M,_-_ M,_, N:" = N,°+ _, ° °

Taking this into account, we find for the state o I

(20.28)
+ T_ (_?+ _l)+ rl2( _ +_l)

The state of equilibrium after buckling will finally be characterized by the relations

(r,j)'_ r,j, (M,j) -_M,j, (N;)" = ,v; + r;,( _?+ _I)+
(20.29)

+ (r,? + T,D-, + r,_( _ + _;)+ (r ° + r_)., ,. 2--:.

We introduce in the right-hand side of (15.17)-(15.19) the quantities T_. Afj'j and (Ns')"

instead of T* ....... Equating the expressions obtained to zero, we obtain the
zj

boundary conditions. In the particular case when the edge contour coincides with

the section al = const, the boundary conditions

T:L_---0, T,_-_0, (N_')'Jf-_',2.2/A_ =0, Jl4t'_0. (20.30)

must be fulfilled.

If there are no initial deformations and we consider the loss of stability of

the membrane state of equilibrium o _, the conditions (20.26) and (20.30) will be

identical and will not contain quantities depending on the state ¢_z.

If the initial deformations and stresses are the result of a non-uniform tem-

perature • of the shell, the elastic forces and moments for the state _ must be
determined from a modified version of Hooke's law, by subtracting the overall

free expansion due to heating from the total deformation of the shell. Let

(,_,), (E°._)_, 2(a°2) • be the elongations and shear of the elements of the surface _"
parallel to ¢L resulting from the displacements ,0 u0 _0 due to the non-uniform-

ity of the temperature field. Let k be the coefficient of linear expansion of the
material of the shell. Then the parts of the elongations which produce thermo-

elastic stresses will be respectively

(,?,?__.(,_).__.(,0),__.

The elastic shear is 2(*°_)_. Introducing these in (9.3) in place of _iiz we find

the components of the thermal stress:

°,, -- _-C- r"° _"+ _('°_,?- (i +') xq'__,, L_..., °"= _e.+,,_."°;,:.,_, (20.3l)

Furthermore, taking into account that

o z o o _ ¢o o(,,,) =,,, + _?,, _(,,,? 2 ,_+z,,,,

and introducing (20.31) in (6.10), we obtain the first approximation formulas for

determining the thermo-elastic forces

_,_ r_ - r,, _, = r/, J,--_ (20.32)
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andofthethermo-elasticmoments
_,,*= _,, ,u', ,u,,_= M,; --'12,

where

] o
T'u=N(,u+Vt_t), T,,=K(1--,),_..,, MH=O(x.--_w_a),/o o

(20.33)

tl_ ,ix

._ EX C_dz, M ._ l____ . f xzdz

-¢17 -t12

(20.34)

For a thin shell it may be assumed that • is a linear function of z.

_1 are the temperatures o, the surfaces z = t t]2,

2":0 = "q q'- .z, 2a-c = .c,- - .¢_.,

we will have

Then if _2 and

(20.35)

T "= Etk_°/l - *; M _ = EF-L_z/6(I -- _). (20.36)

From (20.1), (20.33j, and (20.34) we obtain, using (7.5)

A_N" = 7.M',/I + v, i= I, 2. (20.38)

Introducing these expressions, (20.32) and (20.33) in (20.7) and (20.8) we obtain

(ArT;Dr-{.-(A,TjD., + T,{A,.2 -- T_A,.t b A,AtN't = 0 _ (20.39)
e..-.-

(A,N().,+( A,N¢)., A_A,[M(_ +.?,_+2rd(k.+_?,)+
+ r,_(k=+ ,_,)-- x;]= 0. (20_0)

Here

A,AzX't= -- (A,T-),+A,,T" ---- A,T:,a.2--_.,

A,AtXj=-- 2 [(A,M:I "-F [A,/d; \ 1 (20.41)

+ A,A_T"(k,,+k,, + ,7,-. ,_,).

If we consider T_ and M/ as fictitious forces and momenta, expressed in terms of

initial elongations and initial displacements u? an( w ° by the usual fcrmulas

(20.34) then X; will be the projections of the "thel real load" on a unit area of the
surface of the shell before deformation.

Thus the problem of determination of therma[ stresses in a shallow shell

turns into an ordinary problem of the theory of shallow shells. By solving the lat-

ter we find all quantities characterizing the state @; afterwards one may use the

above-mentioned relations, without any transform ttions, to determine the states

o] and a*. This problem has been examined in _aore detail for a number of

particular cases in the works /VI.2-VI.4/.
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S21. ThePrinciple of Virtual Displacemants and

the Energy Criterion of Stability for Shallow Shells

In the previous sections considerable simplifications were obtained in the

equations of equilibrium, the conditions of compatibility, the boundary conditions,

and other relations of the general non-linear theory of shells for the case of shallow

shells. Despite that, their non-linearity in the projections of the displacement

has been preserved, and the analysis of finite bending of shells amounts, in general,

to a boundary value problem for a system of non-linear partial differential equations,

for which exact methods of solution have not yet been found. Therefore, approximate

methods of solution based on the application of the variational equations of the theory

of shells (which have been derived for the general case in § 10-11) are of great

importance. For shallow shells these equations become considerably simpler.

We shall consider at first the equation (17.45j which expresses the principle
of virtual displacements for the state of equilibrium o I before the loss of stability.

Let the shell be under the action of a surface force

x= x, + .Y_,

where X-1 is independent cf the deformation, and X_ is a hydrostatic pressure al-

ways directed normal to the deformed middle surface and is numerically equal to

the quantity p which does not vary with changing deformations. Therefore in (17.40),
and also in the other formulas in $ 17, one has to assume that

X_, =X_z=0, X_.=--p, (21.1)

and, for an external pressure, p >0.

Let us assume that the external contour force _t may be also resolved into

the components ,_, and ,F_e, the former being independent of deformations and the

latter varying with the deformation so that its projections on the deformed axes re-

tain their given values.

Thus,

Besides, we shall assume that even before the application of the external load, the

shell had initial irregularities w °, representing deviations from the regular surface

o that was taken as the system of reference. We shall, however, consider that

the initial {residual) stresses are negligibly small.

* The relevant quantities, characterizing the elastic deformation, the forces,

and the moments, may be determined from (20,3)-(20.6); in (17,41)-(17.54) the

quantities e_/ and _I must be replaced by e_/+,I/ and _-_I respectively, expressing

there e_: and _ in terms of u° and _ according to (3.5).

For a shallow shell, _:<<1. ,I:<<1, and according to (17.3) _jm_,_ ,_ _. _:_J=I.

According to (17.41), using (21.1)
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_rOwingto the smallness of "I in comparison with wz and the conditions _i_ << I and

._2<< l, the quantities (.° + _) _._ may be neglect,_.d in comparison with _w'. There-
fore

(21.3)

The elementary work of the contour forces may be determined from formulas
similar to (17.41):

+' _'+'° [¢'-++ ¢',,- +,:,('? + -t)] +.',+ [¢,.+ '+"=-%.(..0+ +_)1_4+
+ [+,,+ <,,,,,( :0 + +_)+ <,:( ,,,++:+')+ ¢=,]_+,,?.

This expression may be considerably simplified by taking into account that the

projections of the contour force %,. ¢=2 and %= are the result of the change in

direction of the normal load, of the order of pL 2. Therefore, at the free edge
o + while %, and ¢,= may be considerably larger.%=_ pt, ¢_l _ q)_ _ pL% _ pt= i ,

For a fixed edge _._=0, a=_=0.

Consequently, in the same degree of approximation as in the theory of shallow

shells, it may be assumed that:

Furthermore, according to (17.43) and (17.44), an_ remembering that 0 does
not change, we find

where n, and ._ are, as before, the projectior, s along the directions e-, and _=
of the unit normal to the edge contour before deformation.

The quantity _w= may be calculated from (17_37) where it has to be assumed
that

' ' + ( '+?+ =_)+"I, '.-+.
I !2_+ o_,= +_, + o J I+( _r (21.6)(',+ ",)_'_ "+0+ "D_",.

Introducing (21.2)-(21.5) in the equation (17.45) we obtain the variational equation for
the principle of virtual displacements of the state ,'

t_' =0, (21.7)

where .9_, the sum of the potential energy of defcrmation and the potential energy
of the field of external load, is the total potential _ nergy of the shell, i. e.,

a' = f[ +( .,-I +.++) - +,."I- +,,.'- (+,,+ ++.)_'] +s+
¢

+f f x,,.t- x,,,,+-(x,,-,)-'l.,',,..,,,+=,,,,,,.
(=1

(21.8)

The quantity W_ may be calculated from (17.37) in which the expressions for =I]
must be obtained from (20. 3).
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A 1 zA AIA=xl]___ I .jovIAl.2. (21.9)AIA= =_ = -- _,.t -- '_ ,.2, A2_.I

This equation means that in the state of equilibrium the total energy of the shell has

a stationary value. For an approximate determination of this state, we shall write

the expressions (17.55), which satisfy the geometric boundary conditions, and shall

find the quantity 3' as a function of the undetermined parameters C_, m. n .....

which we introduced. The condition (21o8) gives a system of equations for determin-

ing these parameters:

_zO(t,j=l,2,3...), 03'_ _ =0 .... (21.10)

For small displacements, 3 x is a quadratic function of C_j and the equations (21.10)

are linear in these quantities. For medium bending, 3' is a function of fourth

order and the equations (21.10) are cubic. The equations obtained for the parameters

m, n ..... may be still more complicated; therefore, it is necessary to confine

oneself to solving the non-linear problems with a small number of variable para-
meters. It is very important to take into account experimental data and other

considerations in order to obtain the best approximation, with a small number of

parameters, of the required displacement function.

Let us now consider the energy criterion for stability (17.54) which may also

be considerably simplified for shallow shells.

Above all, taking into account that

eJl << l, tL,<.._ =_j, A,_ L, L*<_< ft 2. ,ll <_ ll_, (21.11)

we find, from (17.17) and (17.18)

L -',_ _ =_.,. O _,,_ _ _t',,==.dL•

According to (20.3) and (20.4)

(21.12)

(21.13)

Consequently,

=11 Xtl _ d't_. L
--_2- --.-R-<<I. -- _.-< <<t

if t --=p, even if ,Ltl is very small, i. e., t_,=_,, _ . Thus, the terms b'_z:',
in th/_ expression for W" are very small in comparison with the terms K,t,, ,=_ or

L)_,:_2. The terms containing G in (17.54) are also negligibly small because the

most important among them are

L _'(n, "t + n===)t**,,_ L D _t:t ,=,r_tt,,

i.e., in view of (21.12), they are at most of the same order of magnitude as the

neglected term

I_ f I'DxIII _'I't A,A=d=t,a_ L_ DI_(_tll t'(O_L DttII wt._ M,,.

(.)
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* The term depending on the external surface load :s of the order

But, as we know,

f" f ._b'/_tld: -.-p I_e,, ttta.

Consequently, the term considered is of the order of

It is small, for instance, in comparison with the term

.ILK.',, .;',ao--L'Et._t.,S_,

One may a/so neglect the term depending on the external contour load, the major

part of which is

t@l _t

C

where, as stated above. _. _ ,p,[_s,_ on _ Lp.,"_ Lf_I *

Thus, the condition (17.54) which together with equation (21.7) determines the limit

of stability of the state aI, is reduced to the sinLple form

wher.e

8f f WI" A]A_dax da.--O, (21.14)

The quantities

qusntitie s are:

•,- = K[½(, +,;,),+ (.I,_-._ o;'._-_ -(1 - .)(.1,.;,+

l _) ],+ D[_(_,,+ z,.}'--(I - ,) (_, _.,-

(21.15)

_, _, _ may be determined from (20.3) and (20.4), and the other

AtA, xtt "_ -- Aam,.l -- _A,j, A,Atl t=_ -- Atwt.t + ®t A,.t, (21.16)

_t =.¢#.n : 4t;

@it -- A7' u,.t + gt(AtAt) -t Al,tt"[" W $g11,

--I Uelt_A, ut,t-- ,(AtAt)-*At.,+tck,t 1,2,

K==Etll ,t D--E, VI2(I--O) (21.1'1}

Using (20.5), the expression (71.15) becomes

' 1 N I ,I K 11 12 , '

,z"= r_l".+ _r,..l,+ )'it..+ ¥ [..+ ,=+ 2..i,._+

o [.;, +._ + 2,,,, .,,+ 2(I - ,) _,d, (2_.18)+2 0 - ,)._l + T

where s'i't,'_'_....are given by (20.4).

In the particular case w ° = 0, i.e., when :here are no initial deviations
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from the system of reference o, the integral of this over the area o actually turns

into the functional (442) given in our previous work /0.13/*.

If the tangential surface load is zero, the equations of equillbrlum of the

tangential ;orces may be satisfied by expressing the tangential forces of the state

:, according to (20.20) in terms of the force function ._/, and the additional tangen-

tial forces in terms of _ according to (20.23).

Introducing (20.20) in (21.7) we obtain Lagrange's variational equation with

the modification introduced by P.F. Papkovich f0.17/. The function _ has to

satisfy the condition of compatibility (20.21), whereas the tangential displacemer, ts

uA expressed in terms of it, must satisfy the geometrical boundary conditions.

One may also introduce (20.23} in (21.14) whereby _' has the satisfy the equation

(20.24) and the corresponding geometrical conditions.

In the exact solution of this variational prob]em, the static boundary conditions

will be satisfied automatically, i e., in this case they will be the natural boundary

conditions, whil e the geometrical boundary conditions are essential. When solving

this prcblem approximately, the natural boundary conditions will also be satisfied

approximately, a higher degree of approximation rendering these conditions more

readily satisfiable.

* We note that in /0.131 we retained in W" certain small terms of the same order

of magnitudcj which should have been neglected wtten assuming _to_,,. ,_ ....
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S 22. Equations of the Bubnov-Galerkin Method

for the Lagrange Variational Principle

In the Bubnov-Galerkln method one writes the variational equations (10.26),

which turn into the (11.12) or (11.7) upon expressing the virtual displacement

vector _V in terms of its components along the principal directions of o* or of

O.

For shallow shells, these equations may be considerably simplified. In fact

Substituting here the expressions for _ *, _z*, _* in terms of e_, ez, m from

(3. 19) and (3.20), we obtain

(_v)z =(1 -4- e.) _ul 4-ez:_u2-}'ml _w, 1,-_

But for shallow shells._,2_eo_<.l, E._--_:,E_==I, u_,wt; therefore, the quantities

e,:_u_, e,.,'_u: may be neglected in comparison with ,u__u and

(_ v)_=, _u__ o.,,8_,, (_,_ __ _'. (22.1)

Furthermore, the internal force on the contour _ with normal fi is, according to

(8.19)

.. _11_ n, dZ" _
+ _*{,%-,,._ { N,*_,+ _-T"_.--_- _" a.,l

where H* may be calculated from (8.12). m_np, nz='--(*o_' and _ is the

angle between -_ and the positive direction of tt e tangent to C before deformation.
The external contour toad is

According to (22.1)

From (8.12), (8.32), and (11.5)

= - (_ - _;, ,4 - _-M;,,,,n,- ,_r_4)(,,, _., + ", +®,_.

In the case considered, the equations (7.3) and (7.4) were transformed into (15.8)

and (15.9). Thus, from (11.2) we obtain the variational equation
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f{(¢,, r;, _, -- r;, .._ (_., +.,,..) +
C

+ (_." - TL,_, -- r.._) (t., + _, _w) + (_.'_ - ,,v,*n, --
- N;*., --., H;JA, +,,,H'.,/A,) __ +

+ (o.- _,,)(., _,_,+,,,_-,)}d_ + ff_l_A,r;,),, + (A,r;,),, +

4- 7_lzA_-- r;,Aaa-F. .4,A,X,*l(au, +_,_ w)+[(n.r;_),, +

Jr" (.4: r_=)., {- T;,Az, -- T;, A,j + A,A,X,'] (_u, _ _, t _) 4-

+[(A,W,3, + (A,N,'): -- A,A. (T., kT,_ 2r;, G +
+ r;, _--X,")J_=}d,,d=,_O,

(22.2)

where

A, N,* = -- D (a=)., , k_ = ku -p "u _', = _' _/A, t =_ = (8 )).dA.

H" = (M_,-- M_) mn_ -- M,_('h -- nS.
(22.3)

If the displacement at the contour is constant, or the trial functions are chosen

so that not only the geometrical boundary conditions but also the static ones are

satisfied, the contour integral will vanish. In general, equation (22.2) will be ap =

pticable if the external contour load is given by its projections along the principal

directions of the shell after deformation. It may be considerably simplified if
the edge contour is composed of parts directed along the coordinate lines after de-

formation. For example, at those parts of the contour which coincide with the line

-'_ = const we have = :=hi2, n._l. n_,= 0.

Similarly, for shallow shells the equation (11.7) may be simphfied as follows:

According to (8.307 N, = T;l_ _- T_2¢o,4-N;;

From (S.32) the static boundary conditions may be expressed by the equations

¢_ = N_ n, + N_ n, + n, ti_/A: -- tt H'21At, (22.4)

where 4,L. ,:,'.;, _] are the projections of the external contour load along the principal direc-

tions el, e2, _ before deformation; in the first two of the equations (8. 29) weneglect

the terms containing N 1 and N 2, We thus obtain the equation

{(q';' - rl, ;z, -- T2, nt)_l u, -t'- ('1'_' -- r;_ n, -- T_ nz)_ u: +

+ (¢,; --N'; n, - N_'.. -- ,t,_ffA, 4- ,_,H_/A_)_ _ 4-
+ (o- o)(_.s._,_- .,_.®,)}d_+

+ f f{l(A,r;,_, + <_,r;,), + r,,A,, -- r_ _,, I- 4,4,x,)_., +

+ [(A, T;_),+ (A,T;,), _ T_,A., -- 7[,A,. + A,A,X,] Su,+
+ [(A,N_)., + (A,N"_), -- A,A: (k,, T_, -}- 2/tz_T_ +

+ _,. r;,--x,)J _ ..} d.,d., = o.

(22.5)

If, in order to solve this equation approximately we are given the displacements in

series form (17.55), in which every term satisfies not only the geometrical bound-
ary conditions but also the static ones, the contour integral in the expression for

these conditions will vanish as in equation (22.2).
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Innearlyall cases which are of practical importance, we have 6w = 0 a_ the
cvntom'; therefore, the corresponding contour lltegrals in equations (22.2) and

(22.5) vanish. Finally, if the edge is clamped, .u_-----O, ti_O, _0 at the contour

and the entire contour integral in these equation: vanishes.

If X I = X 2 = G it is possible to _ntroduce a stress function according to (15.11).

Then the terms containing _u, and But in the surface integral in equation (22.5) will

vanish and the trial functions must satisfy the condition of compatibility (15.16; and

the geometric botmdm'y conditions. We thus obtain Galerkin's variational equation

in a generalized form, including the modfficatior, introduced by Papkovich. It

should be noted that the requirement of satisfying the indicated essential conditions

makes the choice of trial functions for _, very d_fficult. These difficulties are

h,creased by the fact that the stress function expresses explicitly only the linear

combinations of the projections of the tangential displacement and their first order

derivatives with respect to _. In the particulae case where the dlsplacements at

the contour C are not limited by constraints, the functions i' must satisfy the

equation (15.16) and the static boundary conditio1_s imposed on the tangential forces

ifwe want to get rid of that part of the contour i_tegral which contains _u_.

Otherwise _ut must be expressed illterms of _ .
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23. The Variational Equation of the Mixed Method

Taking into account the above-mentioned difficulties connected with the choice

of the trial stress functions in applying the principle of virtual displacement,

N.A. Alumyae has proposed a new variational equation of equilibrium for shallow

shells. In his work /VI.5/ he has proved that when approximating a function w,

which satisfies the geometrical boundary conditions for w, and a function _, which

satisfies the static boundary conditions for the tangential forces, the solution of the

b_tmdary problem of equilibrium for a shallow shell will be built up from such

admissible functions w and _J which satisfy the equation* :

2f('l ° [_,1,÷ ,,_)'- 2 (l -,) (,, .... -- _,2)]+ r_ +
JJI2

I wa÷,,na®l I ,_+ Tt,(wk,, +- 2- --i-a,)÷

+ T_ (2'rt,_,2 + ,,,j._,_,+ ,,,,.o,.,,:,+ _2om -- tu) } d° +

+ f{_.8 7 + _,_s- _,8=+ _(,t. ,...,+,,,s®,)}as= u
c

(da = A_Az da_ daz).

Here _. and _ are the contour values of the projections of the tangential

displacement on the normal and the tangent to the contour

,12 T. = (,k_/A_).2 + A,,_ %/A,L

T= THnj= ÷ 2TlsrLt na -It-Tt2 n::,

S = ( T==-- r_) n_ n= + T_= (n_ -- n22),
A_x_ _ --wt.I -- At.a,o_/A2, A_ xI= = -- _.I "-I-AIa_I/A=,

2t_ = e_ + e_ --F-_*,(_0 +,_) + ®=(.,,° + _|) 1,2.

(23.2)

It is not essential here that the admissible functions _ rhould satisfy the

condition of compatibility and the geometrical boundary conditions.

We shall prove that equation (23.1) will be satisfied for the actual state of

equilibrium, i. e., when all the boundary conditions, the equations of equilibrium

(A=T_)._ +(A_T_),_+ T,tAL_-- I"_A_,_ =0 1,-_, (23.3)

* N.A. Alumyae has derived, in the work mentioned, a variational equation for a
shell without initial deviations from the surface of reference o. Here we shall

assume the more general case, where there is an initial deviation w 0 from the

surface _, but there are no initial stresses. This generalization of Alumyae_s

equation may be obtained by substituting in his equation w ÷ w o for w and

assuming _ (_ + _,_) = _-,, _ (_ + w_)= _ _ whereby _ tj is left unchanged.
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+ T,=(kz= + x°_ + x=t) + 7 _ 0 (23.4)

and the conditions of compatibility of deformatiox s are satisfied.

First of all, it can easily be shown, in view of (23.2), that

I
t (r,, ._ + 2r_, ._ + rn ._J = ,. t r. - 2=,=_ r,= + .n t r,.. (23.5)

Further. let us conside_ the expression

[[r= n=+ r=,n_)=, + (T,= n_+ Tun=_==]d,'=J'(Tu. + Su.)d._',
£ c

where

un=rlju:+axuz, a¢_nlu 2 --nau: (23.6)

are the projections of the tangential displacemen_ s on the normal and the tangent
to the contour.

Using Green's formula

f f/'.4, r_ds= f f l't/A,A=),d=,d=,+ flf /A,A..f.,d=,d=,.
C O) _°1

where F and f are functions of _ and =,. we find

(23.7)

C O)

Thus

f,,.. + =f +,.,.=,, o,+.....o,.,÷ +
G {=l

+ l(At T_),2 Jr lAsTs) 1 ] u,_ + AtTnu2, 2 - . A:r_=uz.i}d=t a¢_.

Using (23.3) and (3.5) we obtain

ftr=.+s=.)_s=ff{r,,(_,,-=_)+ r:_(.=_-=._+ _}a.,
C (0

If only tangential forces which satisfy the equatioa of equilibrium (23.3) in the

tangential plane are allowed, as it occurs when virying the force functions, the
former equations will be valid for the quantities e + _ r_j and, owing to their linearity,

also for _ r_j. Therefore,

y(u_l' +=, tS)aJ =/j'{(eu- =/_)t r. 4 (t_t--t_u)tT=. + l._}a*
C (,)

(23.8)

Using this equation, (23.2) and (23.5), we obtain

126



Here

CT¢:_:?._. :+

+f ,.o) + OF
(.)

I _ 1

= fj'_ r. (_,+_+ ++,+ o:)_-,I+ r. _+,,_=+ (-, + -,ol_.,I+ _° -

c

POOL_ QL.' '_+_,_

(23.9)

,,,,, =(',w):; therefore, using (23.7)

f f r,,(= +-=°)_+,d== J" f r,,(+, +,,,o,A,(,,)_ _=,d=,=
(-) (,)

= f r=,c=,+ =,o)., _= as-- f f l r,, (., ÷ =,o)A,j,,_._a°_a.,.

j'j"/_., ,=o + .,, ,_,= d= =- _" T:u C_ +-; _) n. _a.s-

; /'[T,+(.1Ar =_!.4_]._ _',$a, da, _.2.

But, from (23.2)

"+ -. A t x_=,,._-_ I,_ "

Consequently, taking the equations of equilibrium (23.3) into account, we have

_I(T.A=_I-F(T_Ad_ T_A:_+ T=_A12I(,_+'_ _')

{Tu (_H + _l;) -r- T_ I,h: 4._z=_)] .4_A1+ 1,2_

= - A,A2 IT,,(.,,+ _0) t- 2 T,=('_t=4- .'_,)+ T),i.. -r.%)J.

(23.10)

The derivatives along the normal and the tangent may be expressed in terms of

the derivatives along the orthogonal coordinates, by the formulas

or

Consequently,

a_-(_= t ).t+--i )_,--( )=- i )t+"h _ L_,

1 #( ) 8( ) I d( } d( )

:_,( ),' ::#' o_- .... -_7. ]_( >,=="._. +",-j_., (23.11)

d #

: TOn

In view of (23.9)-(23.12) we have

(23.12)
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I0L({.,,
it)

+ Y), (_2 I 2 I \.
f r{' " l=-- (unZ_y+u,_,S]d_ Y<_ Iw i- _)-}-£-" (w ,a-'_ °} &tc'd_ "L-
C k" _s

l'j ": r,, __- {Ill -I- _=l -f" xUl _- 2 Yj_(h z 4- x,l -_ "_02)+

(2S.13)

Let us, furthermore, consider the variation of tbe energy of bending. Using
as before (23.7), (23.2), (23.11) and (_.5), we obtain

(23.14)

where

C, = M==n=_ + M= n=_ + 2M=_ n_ n_, H-= (M. - M_a) n_ n_ --/d=a (n¢= - n_},

Ni___. DAw/Ai, (A=N) I +(4 N_).:I = --A_A_DAA_ "_ (23.15)

Using the equatzon (23.12)-(23.15), we may convince ourselves that equation
(23.1) becomes

.j'j'{ O _ m + r,, (% -f ,<:T z1,)+ _T=_.ik,-. + _.,,4- =?,)4-

,_f _[ a_ 4"-Y _-- (23.16)(O -- "6) _{t%\o_/ _¢s+ .._',n 4- N, ,:: a_ o. ('_4-_1+
c

+s--(_-t--_o,,)-,t,_ _ T. f[ --.,,)a ,
OS

+(7,, ",)_sia_ : _.

It wih be satisfied if the equations of equilibriur_ (23.4) and the equations (23.3)
are satisfied together with the following boundar:, conditions:

a. the geometrical condition

_='_, _w=0 (23.17)

on those parts of the contour where the normal c )mponent of the displacement is
given;

b. the geometrical condition

Ow_On= O_/an, _(Ow/O_i =0 (23.18)
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on tho_e parts of the contour where the rotation about the tangent to the contour is

given;

c. the static condition

T_, _T_0 (23.19)

on those parts of the contour where the normal component of the tangential force

is given;

d. the static condition

,9=5, 8S=0 (23.20)

on those parts of the contour where the projection of the tangential force along the

tangent to the contour is given;

e. the static condition

Nj .1 "Jr"Nan, -- _o_"-_ T ;Tr(w _ w°)-r-S _:_, (w __ w°i = _ (23.21)

on those parts of the contour where the condition (23.17) is not satisfied;

f. the static condition

G=_: (23.22)

on those parts of the contour where the condition (23.18) is not satisfied;

g. the geometrical condition

u,=_ (23.23)

on those parts of the contour where the condition (23.19) is not satisfied;

h. the geometrical condition

u,_, (23.24)

on those parts of the contour where the condition (23.20) is not satisfied. In the

actual state of equilibrium we have a combination of these conditions. Consequently,

the validity of the variational equation (23.1) has been proved.

For approximate solution of this problem by means of this variational equation
it is admissible to take as trial functions, as it has been shown above, the function

w which satisfies the geometric conditions (23.17)-(23.18}, and the function W which
satisfies the static conditions (23.19)-(23.20),

These boundary conditions are essential. The boundary conditions are

natural for the variational equation (23.1). They will be ident__cally satisfied when

solving the variational problem. The higtler the degree of the approximation, the
more exact will be the solution.

All the quantities contained in equation (23.1) and in the essemial boundary

conditions may be expressed in terms of w and _ according to (23.2).

After convincing ourselves of the validity of the variational equation (23.1) we
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sha.11transform it. without using the equation (23.:3) which has been obtained by ex-

pressing the elongations in terms of dlsplacement To that end. it is sufficient to

substitute in (23.16) the right*hand member of equation (23.8) instead of its left-

hand member. We shall confine ourselves to the _:ase where _ is a single-valued

function; by repeated use of (23.2) and (23.7), and after laborious calculations--
which we have omitted here--we obtain

t_

_oJ

(23.25)

where

_:(AJ_,).2-1--_-Azaz_1+z, _.-I- 1,2 ds. (23.26)

Here we have assumed that ,u are expressed in terms of _, and

I_1,. -- _- e$t | -- Iltllill _ elil _ _111

have been considered here only as expressions for quantities which are not neces-
sarily related to the displacements.

The derivation of (23.25) may be considerabl:" simplified by taking into

account that the first term of the surface integral i_ the well-known invariant of

coordinate transformation, and the second term, w aich expresses the variation

of the Gaussian curvature of the surface during def,,rmation, is also an invariant.
Consequently, one may find at first the expression >f this integral in Cartesian

coordinates and dfterwards express the invariants :n terms of arbitrary curvilinear
coordinates.

Introducing (23.25) we obtain the following va] iational equation equivalent to
(23. 1):

_[I Daaw+ T,, (_,.+ ._,+_,,)+_r,_ _,.+.,_.4.,,)+

i., (23.27)

C
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If all contour integrals m this equation vanish, we obtain from it--since ,_m and ,,,

are independent--the equation

(o)

+ r22(k,,_-_2 ÷ x_)-_ p} _= O) (23.28)

SSI

These equalions of the Bubnov-Galerkin method have been recommended by
V.Z. Vlasov /0.4/ for the solution of the problems of the theory of shallow shells

when the tangential forces are given along the entire edge contour, the function

satisfying the static boundary conditions (23.195 and (23.20) for the tangential forces,

and the function w satisfying the geometrical boundary conditions (23.17) and
(23.18).

It may easily be seen that in this case the equations (23.28) and (23.29) are

indeed valid. In fact. expressing the conditions (23.195 and (23.20) in terms of _p

by means of (23.2), it is possible to prove that everywhere on the contour _=0

and 8 _ = 0 ; therefore, owing to (23.11) the contour integrals in the expressions
8,

for I are also zero* and the other contour integrals in (23.27) vanish owing to

(23.17) and (23.185. But if tangential displacements u and _ are given Oil at least
some parts of the contour, the quantities _ and _8_ nmay have arbitrary values on

dn

these parts of the contour. Consequently, the contour integrals enumerated can be
zero only in the particular case when _ and _ satisfy certain differential

relations, which we shall not give here owing to their complexity.

As may be seen from (23.274 the equations (23.285 and (23.29) are also appli-

cable in those cases where _, satisfies the static conditions (23.19) and (23.20)

for the tangential forces along the entire contour and the function w either satisfies

the static conditions (23.21) and (23.22) along the entire contour, or one of the

conditions (23.17) and (23.21) is satisfied together with one of the conditions (23.18)
and (23.22).

If tangential displacements are given on the entire contour, the function _p

must satisfy the condition of compatibility and the geometrical boundary conditions.

As may be seen from (23.16), the variational equation (23.15 leads in this case to

the same Bubnov-Galerkin equation as does the Lagrange principle.

If tangential displacements are given along a part of the contour and tangetial

forces along the rest of it, but the particular case considered above not valld, one

has to use the equation (23.1) or (23.7). In our opinion, in such a case the problem

must be solved with _ high degree of approximation.

* Results of an analogous transformation for a plate may be found in /VI.6/.
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§24. ApplicationoftheFormulaforStuticallyAllowedVariations
in theStateofStree.stotheTheoly ofShallowShells

Wehave examined in the previous sections the variational methods for the

solution of problems of the theory of shells based on the principle of virtual dis-

placements; we have also considered the mixed zaethod, where the bending and the
stress functions are varied.

In this section we shall elaborate a new toe',hod of solution for the problems of

the theory of shallow shells based on possible va, iations of the tangential forces.

* Let us give some relations of the theory of shallow shells which are needed in

the following.

For X*. = 0 and X_ = 0 the first two equations of equilibrium (15.8) may be
satisfied, wi_h the error inherent in the theory of shallow shells, by the force func-

tions q,, according to formulas (15.11)

where

A,._rl= 9,_ _;--=-t. :). (24.1)

Substituting (24• 1) in (15.8) and using Gauss' formula for the undeformed surface

(2.27), it may be seen that (25.3) will be satisfied in the assumed degrec of appro-
ximation.

t.et M ° (i, k = 1, 2) be the particular solutions of the third equation of equilib-

rium (15.9) mwithout taking the tangential forces in'.o account. Then, the equation

(15.9) will be identically satisfied by the functions of moments 'h and _ given

by

where

(24.3)

Sustituting (24.2) in (15.9) and using Codazzi's con Jitions for a deformed surface

(A:k[2),--(A,*;I),+ k;_A. b+g:.h_=0 ,._. (24.4)

it may be seen that (15.9) will be identically satisfied, In order to determine the

values of the forces, moments, and deformations )n the contour, let us consider a

right-handed trihedron l_ _ _}:

-_=l_. _-!, ,,,=1_. ,[, _=[_. _[ (24.5)
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OF POOR Q_.,_,i /

* with the apex at a point on the contour C of the shell. Here _ is the unit tangent

to the contour C; _ is the unit binormal to the contour, and _ the unit normal to

the middle surface. We shall, furthermore, introduce the following geometrical

quantities:

";=- _ _O,JCj--the normal curvature of the middle surface on the contour of
i,j

the shell in the direction ¥;

C=s_= _. kijT,nj --the geodesic torsion of the curve C;
LJ

_=; a_ =_ivn--tbe geodesic curvature of the curve.
ds

We shall denote the tangential and the normal derivatives of the function _p as
follows:

_=,_ A, _=, _G 7, _ (24.6)

Let ,. and ,, be the relative elongations at the contour in the directions'_ and

7, and ,_ the shear angle between E and _; let also _, _,, and -,._ be the para-

meters of curvature in the system of the coordinate axes along H and ¥.

Then, according to the transformation formulas for the components of de-
formation we have

Resolving the displacement vector _ of the points of the contour along the axes of

the trihedron I;: _ 7_ and assuming ,:=.n+v=-wm, using (15.1), (15.7), (24.7)

and (24.8), and the rule for differentiating the unit vector'_ of the trihedron /III.3/

--==,. ,.,._'=7;_- 7T-. a_=.7-7,,.._
d.¢ ds ds

dn - _- "; EE- " '

(24.9)

where _,= _ +/% + _,,_ is the normal curvature in the direction n, we obtain:

(24.10)

a____ ;. +, (aw),"=a, • _" i -n:_'
dw dle,

a2_ a_,,_ ,._'f_, _- - --
2tns-- ds + da xt -ds " dn '

d;"&' d_m dw d / d_ "_

=--9; _ +'Z (24.1D
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* Let T and S be the normal and tangential forces at the contour, and T_ and S then

same forces on the surface element with normal _ Then, on replacing T tj by
the stress function (24.1) in tile transformation formulas

we find /III.11]:

r_= V_r_j,,,j s::V r,j,,_j, r.=_r,.j_,,j (24.12)
l,j i.] I.j

r. = a-s7 + _ _' z. = an--7 , " an \ as
(24.13)

Furthermore, let G and H be the bending and twisting moments on the contour, and

G v and Hx the corresponding moments on the section with a normal ¥. Then,

after replacing M by the deflection in the transformation formulas
lk

_.j L/ I] (24.14)

we obtain the expressions for the moments at the :ontour:

( _') _(_

a'$-av d_ d_,

(24.15)

In view of (24.2) they can be expressed in terms of stress functions as follows:

. dr_s

(24.16)

G,--_,,+ d_--("+ _'"

where

l.,' _,1 (24.17)

o_=2M,,:,_, _,=Z+,,,. *o= Z*....
t,j 1 l

Let us consider the variational formula (13.7) for i hallow shells. Using the simpli-
fied relations of the theory of shallow shells given [n Chapter IV, we obtain from

(13.7) the variational formula of the principle of al: owed variations of the state of

stress

Here W is the additional work of deformation and _W its variation, which is

,_t_"= E ( ,_ r,,+ _,,_,,,,,) = Z _.,,_r, + _,,_,,,,,) (24. i9)
i,_ i,k
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A 'x_,_ and _,, are the components of deformation of the surface, expressed in terms

of forces and moments, according to the elasticity relations:

_:__K'IT,,-- _T_); _,,=k"(T_, ",r,,);"_F==K'_l--,)r_: (24.19a)

i_,,: D' (M. .._I=};_,- D' (M=- ,,_I,.):A _ zm ÷ ,, re.z.

_, and ,_ being the same quantities but expressed in terms of displacements

according to (15.7).

The variational equation (24.18) will be valid if the variations of the forces and

moments satisfy the equations of equilibrium (15.8) and (15.9), and if the variation

of the state of stress is performed without variation of the contour forces and

moments:

_(P--0, _Xi :0, _._0
(24.20)

or if the boundary conditions for hinging or clamping

_: o, 6: _ _:o, aE=_o (24.20a)
dn

are satisfied at the contour.

If the angles of rotation _ are not varied, then, according to (24.18) the states

being approximated are the statically allowed ones under continuous deformations.
But if _, are varied, the approximated states do not possess this property (§ 13).

We shall examine only the first case, where the displacements do not vary.

On integrating by parts, we can obtain from the variational formula (24.18) the

equations for forces and moments of the Bubnov-Galerkin method for the integration
of the conditions of continuity; it also enables us to formulate the boundary con-

ditions for the theory of shallow shells in terms of forces and moments.

Substituting for hX and BLt from the equations of equilibrium (7.1) and {7.5}

in the variational equation (24.18) and integrating by parts the terms with derivatives

of forces and moments by the formula

(24.21)

we find a new variational equation

(el ia

(24.22)

Since in (24.22) we approximated the statically allowed states, the contour term

and the non-integrated term vanish. Consequently,

(24.23)

Whence. in view of the arbitrariness of _r,_ and _. one can derive the elasticity
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* lelations.Thesealsoleadtotheconditions of :ontinuity for forces and moments

and also to the natural boundary conditions for _he functions of forces and moments.

In order to obtain the equations of the Bub;ov-Galerkin me_hod, we substitute

for iT, and _f_, from (24.1), (24.2), into (24.23) Since the particular solutions

do not vary, we obtaln from (24.23)

Since _; does not vary and _+ and _t are absolutely arbitrary, we obtain two

variational equations:

r,,% -, ,,,"_,,)k_+,,--_ • 0_,/+ ]-
'(_ " (24.24)

_,, - A,A_ _, -_ (24.25)

the former containing the variation B_# and the latter the variation _. Let us con-

sider the first of these variational equations. _he first square brackets contain the

derivatives o_-_!o_, and 0_/0,;_,. After integrating the expression (24.21) twice by

parts we can get rid of them. After integrating by parts the terms containing

_ and ,,_ in equation (24.24) we obtain the con:lition of compatibility for the actual

state (Gauss' condition). Consequently, the cor;'esponding expression obtained by

integration becomes equal to zero. In equation _24.25) the terms containing _:_

and their derivatives vapish by virtue of the conditions of continuity, which follows
from Codazzi's conditions.

As a result of these calculations, which w_ shall not give here owing to their

l_boriousness, we finally obtain istead of (24.24 :

(24.26)
(,)

where L is the left-hand side of the equation of compatibility (15.16):

(24.26a)

and I 1 represents the contour integral

/[( dAs dAn_\ '
2%.-)_,_, _ _'_1_,._,, 1_ (24._.v_
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Here

An=,a -- K" (T, --vTt). A,_% -- K' (T. - _T,).

-4,,_ =a_-- K' (I +-)S.

(24.28)

The quantities A,, A are considered, for the present, as being different from

zero, because they w_ill approach zero during the solution of the probl_m.

The variational equation (24,21) enables us to establish the boundary condition

for the force function _, and to validate the application of the Bubnov-Galerkin

method to the integration of the equation (15.16).

1. Let the tangen*Aal forces T n and S be given on the contour. Since these

forces are given, we obtain from (24.13) the conditions

- ¢ls \ dn ] ' da -- '

which are satzsfied for _+=--= =0 Hence in this case the contour inte_.ral I t int,v ' •
(24.27) vanishes so that the _ubnov-Galerkin method may be used for integrating

the equation oI'compatibility (15.16). This case has been considered by V Z. Vlasov,

2. Let the tangential displacements _ and _ be given on the contour of the

shell, and let _,_ and _'_ be arbitrary functions. This case has been considered

by N.A. Alumyae /VI.6/. a"

In view of the arbitrariness of _ and _, the integral I vanishes if the
d,7 1

following Londitions are satisfied on the contour:

-- Jn _- 2 d_

or, taking into account (24.28)

where

a... 2 _a,_.. =,.% _ _ + : a.'-'._.

%_F,. ÷A_,[c = O,

(24.29}

r.=K'(r_-,r,i. Q:K'(C ,r_), [:_=K'(I.',)S, (24.30)

We assume that T _, T r , S are expressed in terms of _J according _o (24.13). Sub-

stituting for ,,, ,_ and -_n, from (24.10) in (24.29) and using the Guass-Codazzi

conditions in the form given in /III. ll],

_," (24.31)

d_

we find the conditions which must be satisfied by the given d_splacements
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_- -u----u -P

a_.a_-L'+ "" - _ +_ -a-_ :Fs, _ ,..&s c=o

(24.32)

Here we have eliminated the unknown mixer derivatives of the given displace-

ments by using the formulas

ds',a_/ \ . },_7, (24.33)

where q_ is an arbitrary function. The right-hand side of (24.32), denoted bE f, may "

be written as

[ ,,, ,s]f=K" G_',z -q --H--p(2 4-,)d_ , (24.34)

G -- K" (r: --,r .),

when using the condition of equilibrium on the cortour /III. 11/

dTn dS _-

The formulas (24.32) may be considerably simplified for particular cases. For in-
stance, if the contour is a geodesic middle surface then x = 0 (rectangular cylind-

rical strip). They may also be simplified when the bending w is subordinated to

the boundary conditions of hinging or clamping. For these cases we obtain, res-

pectively, the conditions

dw ' _"2 d T
;=K L_ +'):_-s -_T" l,sJ"r, =,r,; ,t,,,,ic=O, (24.35)

(2+,)dTn dT=-o, r .... r, a,_A,, I :o. (24.36)
iI$ drt i C

3.

co_tour of the shell:

d_'_, d4

a_,,_ _ d_._,Substituting for --'..... in (24.27) we obtain
dn z ds 2

"_n-- ,A -- + _ _T)""- "

or integrating the last term by parts, since ;,_ is arbitrary, we obtain:

dA s dA,_ _ "A_)_An--'M_--_'n +- ds ds= ,_-_:0.

.,.x 0 I(?)}1c:0+

Let the normal force T n and the binormal displacement _ be given on the

(24.37)

OR[G!:'/,L _'. '
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_rWhence,substitutingforAn, A s , and A m from (24.28) we obtain

• a_" ,i.v
7Ll,,ff) +<d;jj a,, a,; an ,_s _ ,:_

-- d'_ml_ ' dr, -; I /dw'(:'] (24.38)

_:L, d_--_- _ +_k_) J=

=( F, - rA , - -a-; - as ds" \ , l ;

Here we have used the Gauss-Codazziconditions in the form (24.31). Thus, for

the integration of the equation of compatibility according to the Bubnov-Galerkin
method, with the bavndary conditions (24.37), it is necessary that the conditions

(24.38) be satisfied and that the term outside the integral should vanish, if

is single-valued, this term vanishez identically. The condition (24.38) may be

replaced by a simpler one for contours on which u = 0.

In this case, we obtain from (24.37) a_+ =0. Consequently, we can assume
ds _

that on the contour, _ -- C. Then the condition I i = 0 becomes

As ds_O

{ a,,

,t_ _:o it results from this that A s = 0. Then weSince in the general case ,_-

obtain for _ the boundary conditions

" ~ _ /_t_' V _ b%_j 0 (24.39)

4, The binormal component of the contour load S and the displacement along
the binormal _ are on the contour of the shell

d d., de --

•°=.. (24.40)

In this case the function y, satisfies the conditions ]III. 11]

)() ]
'-F ,Is _ • _" _ • dn

s

[.,I_

(24.41)

(24.41a)

The latter expresses the condition that the function q, should be single-valued.

The boundary condition for x = 0 may be obtained directly from (24.41). If the

edge of the shell is hinged or clamped we obtain, instead of (24.41), respectively

_.__u. : 2 aF,, _ ___, (24.41b)
dr_ ds dt_

, dF., dl_

a._ an (24.41c)
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_rThe condition 11 = 0 can also be exactly satisfie_. The boundary conditions for qJ,

found in this section, may be used for solving the problems not only by the Bubnov-
Galerkin method, but also by different ones.

From the variational equation (24.25) we ,:at obtain two of the Codazzi con-

ditions for the moments Integrating by parts the terms containing derivatives of
_i we can obtain

'_ _ '_ s._, "r 1.2)a_,d=2 (24.42)

where

"---/[ '_- _'} _-(:_" ..... )_'_' l"_ (24.43)

and _-,_ and _,o are the projections of the vector _g on the normal and the binormal

to the contour of the shell, and × and x are the bending deformations on the
n$

contour (24.11); ,, and z_, ar_ the same quantities expressed in terms of
moments:

A _t
•._= _' (Q - ,,QI. _,, = o' (_. ,) i-,'. _, =_D' (6 - ,ci;). (24.44)

On replacing _# by (24.19a) in the variational e ]uation (24.42), it becomes

where

/, /- (24.45)

l _2d

and N may be determined from (24.3).

Since i_ is arbitrary, the Codazzi condi'ions for the moments L. = L 2 = 0
and the elasticity relation on the contour __--_ and ^ '_,_=_, resu,t from (24.45).
These elasticity conditions may be expressed a_

where Gs, G,

condition L i = 0 may be satisfied by a single function of moments

where

d_' d ]dW
_' ((J_ ,G_. --- --'i'--_#_.,+ _ ,tnd_: D' {I +_ H= _ apT-- #_ _a-_£ (24.47)

and H may be determined from (24.14). We n_te that the Codazzi

([, assuming

(24.48)

! _ _- _)_+_+_ _,b o

(24.48a)

Then, we shall have to deal only with the variati,mal equation (24.26).

140



Let us now formulate the principal types of boundary conditions of the theory

of sha!low shells, for force¢- and moments.

1 °. On the contour of the shell or on parts of it, let there be given: the vector

of the external contour load _., and the bending moment G. The static boundary

conditions will be expressed in the following form:

,t_ + r_ _- + s _-s' (24.49)

From these we can eliminate the derivatives of w if the contour or a part of it is

a geodesic of the mlddle surface (x = 0). In this case, we obtain from (24.11)

Whence we find

z^
_dw_ _,/s ÷ e_, -- :: -

are assumed to be expressed in terms of the moments according towhere _; and Z,_

(24.44L

For an arbitrary contour the third condition of (24.49) may be satisfied by

the variations
d_H

ds

because w does not vary, and _?',--_s=0

2 ° . The edges of the shell are freely supported: w = 0, G = 0; from (24.11)

with w = 0 we obtain the relation

5

....,)

Thu% all the boundary conditions are expressed in terms of forces and moments:

r

^ j'^

where c is a constant.

3 °. The edges of the shell are hinged

U::vc:_'_O, (_=0. (24.52)

The conditions u = v = 0 are equivalent to the boundary conditions (24.35):

dw _K'_12 dS dr_l° - + ,j_- _;j. r.... rodn I

(24.52a)

From (24.11) we find two different expressions for dw]dn:

an ,j '
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_¢Equating these we have

f(., ,)-_- --.._ _ = C --- "oust. (24.52b)
u

Consequently, the conditions for hinging (24.52) are equivalent to the conditions

(24°52a) and (24.52b). They become simpler if tke contour of the sheU is a geodesic

llne of the middle surface (x = 0). In this case, we obtain from (24. 47) o,-,,_=o,

i.e., G s = 0. The conditions (24.52) are then equ_:valent to the conditions

dS J T,

r .... r, (-'+_)_l_ _ =o G:0. G,=0 (24.52c)

4 °. Let us consider the case where the ed_ es of the shell are rigidly clamped:

dn

Under these conditions, we obtain from (24,41)

dS dT,
(2 + _) -_-s -- --_-n = 0: r, -_r.. (24.53a)

From (24.11) it results that ×s = _ns = 0, or according to (24.44),

O,--,G=0, _=0 (24.53b)

Consequently, the boundary conditions (24.53) ar_ equivalent to the boundary condi-
tions (24.53a) and (24.53b) for forces.

Thus, the fundamental boundary conditions _f the theory of shallow shells have
been formulated in terms of forces and moments.

In summing up, let us note that from the formula (24.18) for the statically

allowed variations of the state of stress, one can deduce the generalized equations

of the Bubnov-Galerkin method (the first of these ts simply (24. 26}).

.I" f l_'_da,da= : /, D' t" ('( L,b_, "F L,_'_2) da, da_ = [_.

dT* {=_

From which, if the conditions of continuity of deft rmation L = 0 and Li = 0 are

satisfied, or if they are satisfied in the variationt I form

f ['t,_,.=,._ = 0. (24.54a)

we shall obtain the equations

h =o, (24.55)

I==.o, (24.55a)

which enables us to formulate the boundary condit ons.

According to the above, we reach the fo11,_wing conclusion: in order

to be able to integrate separately one of the furdamental equations of the

theory of shallow shells, namely, the equation f*f compatibility L = 0 in
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* the Bubnov-Galerkin method, i.e., the equation (24.54), it is necessary and

sufficient that the contour integral 11 should vanish. We may also arrive at the fol-

lowing conclusion: Since. for shallow shells, the Codazzi conditions L l = 0 may
aiways be satisfied, either by means of a bending function w 1 or by a function of

moments % the variational equations (24.52} are identically satisfied. As a

result, the condition 12 = 0 must be satisfied. For that, the following elasticity
relations for moments must be satisfied:

] (7,_,

-A,A-%' oo-T--A,.4--::"_J - k,,+,,,)¢,

(24.56)

or

:'" l-m°'+ _, "o=_ _,A,,",_,.-7+ k_,++D' _._,,..- _m,,)+

I ( I 6',l,2__. I 0+1

¢I, 0.4, % ,_A,'__ At,:,+--

(24.57)

Thus, when the elasticity relations for moments and Codazzi's conditions are

satisfied, the statically allowed variations of the state of stress of the shell occurs

without variation of the stress functions _1 and _'2 '

The variational method g_ven above is in fact a very general method of inte-

gration of the fundamental equations of the theory of shallow _hells. This method

may be applied in two different ways, depending on the form in which the elastic:ty
relations are written.

1. We satisfy, by a series, the elasticity relations (24.56) and, consequently,

the third equilibrium equation (15.9), assuming

(24.58)

(24.59)

where W n (_ZL, a 2) and _'mn (c_, '_2) are given functions satisfying the boundary
conditions. The functions ,_,_,_,_,, _,_ and _,Io. _,) are not subject to any boundary

conditions and may easily be chosen according to the structure of the relations

(24.56). After eliminating the coefficients Amn and Bin, from (24.56) we obtain the

relations between finn and Cm_ .

Other relations for f _n and Cmn may be obtained after integrating by the
Bubnov-Galerkin method the conditions of compatibility

(24.60)

2. Let us take the series

rn, n ,,, n

(24.61)
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_tand also the ser_es (24.59); substituting for Amn znd Br.,n in the elasticity relations

(24.57) and eliminating them afterwards from the expreuions obtained, we find the

relations between f.,n and Cmn . Other relations between them may be obtained by

the Bubnov-Galerkin method from the equation

t=_ (24.62)

This method is illustrated in Chapter XlV by the solution of p"oblcms of

large bending of rectang_lar cylindrical strips. Let us make a few remarks on the

substan:e of the variational method proposed m this Section. As it may be seen

from the above, the fundamental characteristics _f this method are:

1 All the three equiliLrium equation_ (15. I) add (15.9} are exactly satisfied

according to Castigliano's principle.

2. The condi*Aon of compatibility of defo_'mation (15.16) is satisfied according
to the Bubnov-Galerkin method.

3. Only the force function _2 is varied, while the bending remains invariable.

:From this it foilows that the method proposed here is different from that

proposed by P.F. Papkovich, in which:

1. The condition of (15.16) is accurately sa',isfied.

2. The third equation of equilibrium (15.9) Ls satisfied according to the
Bubnov-Galerkin or the Ritz method.

3. Only the bending function is varied, while the force function remains un-
variable.

The mixed method set forth in Section 23 is an interl_ediate one, bacause

according to it both the force function and the bern ing function are varied, while

the equilibrium equation (15.9) a_d the conditionG compatibility (15.18) are satis-

fied accordlng to the Bubnov-Galerkin :nethod. T'_e amount of calculation work in-

volved in these three methods is nearly the same n solving geometrically non-linear

problems. But when so]ving physically non-lineal problems, the method proposed

by us may considerably reduce the amount of calc_tlations. The consistent applica-

tion of the variational method to the solution of pr,_blems of forces and moments

enables us to broader the field of solved linear as well as non-linear problems which

are of practical importance.
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§25. FundamentalRelationsfor ShallowShellscfRevolution
andforCylindricalShells

WehavesetforthintheprecedingSectionsthegeneralnon-lineartheoryof

elastic thin shells in arbitrary orthogonal coordinates, including also several un-

common particular cases; therefore the theory developed is quite complicated.

The application of the formulas deduced there for the solution of particular prob-

lems becomes even more difficult owing to the large number of concepts and

notations which must be looked for in the corresponding Se=tions of the book. in

ocder to make it easier for the reader who is mainly interested in the most important

applications of this theory, we have stated in this Section the fundamental relations

of the non-linear theory of shallow shells without giving their derivation. We shall
recall here the necessary concepts and notations, so that the reader can acquJre

a cursory knowledge of the first part of the book which is necessary for an under-

standing of the following pert.

Let t be the constant thickness of the shell before deformation and o its n_id-

dle surface. The position of a point on this surface may be specified either by

Carlesian coordinates x, y, z, or by curvilinear coordinates _z and "2. consider-

ing the point as the intersection of one of the curves of the family a, with one of

the curves of the family a z. These families of curves form a net of coordinate

curves on the surface c (see the beginning of Section 2). The formulas (2.1) give

the relatign between the Cartesian and the curvillnear coordinates of a point on

the surface o. Let us conslder for instance a spherical surface defined by

equations

Evidently

(25,1)

x: +/+z' =/-_',

i. e., the expression (25.1) is the equation of the surface of a sphere whose radius

is R and whose center is situated at the origin of the Cartesian coordinate system.

If xoy is the equatorial plane, then 8=00= const, or z=,?cos"o_ eonst
is a paz'allel, the positioil of which is determined by the angular deviation _o from

the pole; _-: _0 - const defines a meridian, situated at an angle =_ to the

initial meridial,. The position of a point on the sphere is determined by the inter-

section of the circumferences _ = 00 and _ = _. Thus, _ and _ are the curvilinear
coordinates (the so-called geographical coordinates) of the point on the sphere.

Let ds be the distance between two infinitesimally near points on the sphere

(line element). Then

(25.2)
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HereRd6is alineelementofthemeridian,Rsil0is theradiusoftheparallel,
andR_ta0d_isa lineelementoftheparallel.

Forthe general case of the arbitrary orth )gonal coordinates

where A l and A 2 are arbitrary functions of (tt end a 2. We shall assume in the fol-

lowing that the coordinate lines a Iand a2 are the lines of curvature of the

surface a, i.e., lines along which the curvatures of normal sections of the

surface are maximum and minimum. We shall der.ote these curvatures by k I and

k 2. We shall thus finally assume that

(25.3)

Besides, we shall confine ourselves to the parti¢ular case where o is a surface

of revolution or a cylindrical surface. We shall denote the corresponding Gaussian

coordinates by a_-_a and _:_). The coordinates a and _ may be chosen so

that

ds: = da _ + B:dB: (25.4)

where B is either constant or depends on a.

Cons equently,

/4, = ;, A, =B,I_, (9.5.5)

The geometrical parameters of the surface o ml st satisfy the Oauss-Codazzi

conditions (2.27):

Let e,, e_ and tiibe the unit vectors of the tangents to the lines a and

on the surface o, in the unit vector of the outer normal to a, where the trihedron

:e_,e_ m'r is right-handed. Let also o0 be the tr m middle surface of the shell be-

fore deformation, obtained from o by the displacement _wo whose maximum value

is of the same order of magnitude as the thicknes _ of the shell; the surface o is

either shallow, i,e,.

or the initial deviations from o are rapidly varying, so that _o divides into

shallow parts.

We shall specify the position of a point on the surface _0 by the same coord-

dinates (t and _, but now the lines _ and _ will not be, in general, the lines

of curvature of the surface =% because the principal curvatures of a have in-

creased by x,,, so that the curvature of the coot linate lines has increased by

-_,_ z_. These initial changes in curvature (we s _all assume that the stress

caused by them has been removed) will be given ty the formula (20.1):

B _' o= O_ "
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Let us assume that under the action of the load, the middle surface of the

shell transforms into the surface 6 z , composed of shallow parts; the position of

a point on this surface will be specified, as before, by a and _. The projections

of the displacement corresponding to this deformation, along e_. e..,. m, will be

denoted by ,,L . t,_, w'. Let -_? be the relative elongation caused by the load of an

element of o which before deformation had the direction "ei and 2+_= the change

in the angle between el and e2. also caused by the load. Then, according to (3.55

and (20.3):

• 2 \ a+ j + _-= -,_T'

:r+'<"",' ,++.... ' <',">,=4= ++++",+:+ :,-_-+-]+ :,++-++' .+++-_- (+_,7-""' .u+] + (25.8)

q\-oT ' _++ ] a:U , _, -,j_ -+-

-'I'- B out 'J_ .,j aB4- +-%--- +-;-"

The changes in the curcature x_ and the torsion x_2 will be given by formulas

similar to (25.75:

> dp .;
(25.9)

B.Z.
-= 7-, "_---_-_

The co:responding tangential forces F_, ?'12 = T_, the bending moments M! , and

the twisting moments MIz=,I4_. , whose positive directions are shown in'Figure 6,

may be determined according to the formulas (20.55:

' ) +, .. K _ Et,,'(l -- v_),T i = h,'l_ I -:+-v+ i T!2= A'tl , .t• z,, ++

Ill = P(,.: 4-, .,,:),DS:.,: D(I - ,) lilt. (25. 105

D:E?;12(I-- ,:,i- 1,2.

Here and in the following the symbol I,+__22shows that the formulas which are not

written may be obtained from the given formulas by permuting the indexes 1, 2

and replacing u! by vI and a by _, whereas the other quantities remain unchanged.

The equations of equilibrium (20.115 and (20.12) must be satisfied on the whole

surface; in the case considered they become

+_tST-i)+ _G _ r,. _± = o,

d I t , ,)7] _t O_ _0;
a_ "BTI_ + _-'b,.= o_ (25.11)

t?a._, + r I(+, +,,? + "I)+ 2T],(,,,% + G) +

+ r_(k.+ x_ +.l)+p=O, (25.12)

Here and in the following we have introduced the Laplace operator

(...5]+' o,(...>},
the normal pressure being p > 0 for external pressure. The shearing forces are

determined from the formulas:

_ - D_ (a.,),BNi= - D o,_(a_,,). (25.14)
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Introducing (25.7)-(25.10) in the equations (25.11* and (25.12), we obtain a system

of three non-linear differential equations for .', v:, _.

In the following we shall assume that the b)undary contour C is composed of

parts C: on which a = const and 0_,3_, ancl )f parts C 2 on which _= const
and 0_=_a. Let the external forces and mon+ents, along the principal directions

of the surface a, be applied to the contour C1: the normal force p_, the tangential
displacingforce 3, the shearing force N,, and the bending moment _I I. Their

ppositive directions coincide with the positive di'ections of the internal forces shown

in Figure 5. The analogous force_ and moments applied to the contour C 2 will be
denoted byp2, 3, N2. and M2-

According to formulas (17.2_)-(17.31), the following conditions must be satis-

fied at the free part C

7"I = p,, r[2= _, M h = _,_, t,--'2

t2_ <#,L,I'_ , r[z/o'_ _,''_
' + rl + -;.-) Y + = n,b_"-o_- ' (25.15)

N++-_- -_- ,t_-+._-)+ rl,_ +=++;,)=_+

Az the fixed edges the purely geometrical conditions must be satisfied:

ul=O, _i_O, li_O, -._O(=t CI) I+,2. (25.16)

At those parts of the edge contour where the clan ping is incomplete, mixed boundary
conditions must be fuliilled, as for in_tarce:

a. when the contour C is hinged:

n'=0, v'_0. zu_=0. ,H',_0; (25.17)

b. when the contour C is freely supported

+'=0 .'=o, ,= rl+,++I=,_, (2s.18)

or

,J,+=o, ::=p,, rl, =,, _;i= _, (25.19)

The boundary value problem in this formuJation it called the problem of the theory

of shells for the displacement componerts. It is rery difficult to solve it directly,

in spite of the simplifications already made; therefore, one looks very often for

approximate solutions of the problem by means of the variational equations of equi-

librium. For one of these equations we may _ake tne variational equation of the

principle of virtual displacements

_' =0, (25.20)

where 2 t is the _um of the potential energy of de:'ormation and the potential energy

corresnonding to th_ work done by the external In+d; according t'_ formulas (21.8)

and (17.37), for the cases considerea this sum eql als:
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Ci__i".........

OF F_.... <
.b _ _dv T

(25.21)

3'he generalized BubnowGalerkin equation (22.5_ may be successfully used for solv-

ing the problem for the components of the displacement, We shall write this equa-

tion for the case under consideration, assuming, in addition, that:

8w' = 0 on C. (25.22)

TakLng into aeuount the initial deformations and also somewhat modified

notations, we obtain the equation
#

0

- ._I=)0_- ±] dfi'-' +

¢'_ (25.23)

{_--: .L T',_ °t_ ]l,v' -- B (k T', q-k,. TI + p)_=' +
O_ L Oe J

+ ::[BT: " O_-"l-i"!_"l x + T I f O_ oil'_ BT_l]_,lil I(A-, _) ,_\W + 7_-)+ +

_,/C_L <_:',,",, i -]. )

Let us assume tha_ for a certain critical value of the external !oad, m addition

to the form of equilibrium o i , an infinitesimally near form of equilibrium at _s

also possible. Then we shall say that the shell is at the limit of stable equilibrium.
We shall assume that the shell is ei'.her shallow or that its t,'ansition from the form

of equilibrium ,fl to the form of equilibrium _* occurs with the formation of a

large number of "waves" so that the mlddJe surface divides into _hallow parts.
The projectiors of the additional displacemen*.s on _, e=, _ will be denot_,d

by a. v _. The additional elongations, the shear• and the changes m curvature
which occur tn this case, are determined according to formulas (20.4) and formulas

like (20.1):

= <<t-a + -_-)'

( ,_,., <.l" i £_ ( <,_,+...,,_._i

• )_+o_- - vD, -- o= \of , ap]+

&_,( _._ o_ _ _,
+ _¢\ _;- v -_c)' (25.24)

..... (oo)O_ Bx: O_ dB 1 0_t, 0 1 .
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Thecorrespondingadditional elastic forces and moments are

T, = K(,, -t--',,:), T,..= K(1 .- v ....
1.2

?,'!,_Ob', +-,,-,_:>. ,'¢_:=O _ _,,.:. -- (25.25)

In the state of neutral equilibrium, beside_ the equations {25.11) and (25.12)

equations (20.14) must also be satisfied, which f, Jr the case under consideration
become:

]a);IBT,)_{_ dr, or% .... _,-y_-= u:

[j:

bt_a_ + T, ik, "t-*,° + _',)+ 2T. ("?2+ _',P+ T. tit. + .._+ ._)'-r-'

-6- 7 l',.t _._ ':'r',,t,,_T-- T_',_-,.= 0: 125.27)

,V, =--D_-(a"=,), B/V,= - D _ (a._). {25.28)

Since the loss of stability of the shell occurs without additional loading, the static

boundary conditions of the type (20.30) must be satisfied at the free edges:

T_O, Tv_,_O, ,_l:_O; 1,2

B,v,+_- + Br,,_-- r, _'---o o. c,_ 0 -- " (25.29)

.... #-E.--O on C,

For fixed edges the following conditions must be ,¢atisfied

-=0. _=0, _=o, !)-=!-=0 (on CO lj2, (25.30)

For mixed edge conditions, vartouG combinations of the equation (25.29) and (25.30)

must be satisfied.

The equations (25,26)-(25.27) may be replaced by the variational equation

+ KI,,' +,:' + 2,,,,..,+ oII - ',)'f_l+

4.- D [_,= --I- :,,: ÷ " ...... -t-20 ),_,.I}Bd,d_=O,*

(25.31)

where by the variation the displacements u, v, am w allowed by the constraints

are approximated.

The equation of equilibrium of the tangentlal forces (25.I I) may be approxi-

mately satisfied, within the approximations of the theory of shallow shells, by

assuming

a,r_=__pBaB a*' T_ O'*t

BT_ _l 4 __. #B _'.

(25.32)

* The symbol 3 (open Russian I_) stands for energy here and in the following - Translator.
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wheretheforcefunction4,Imustsatisfy the condition of compatibility of deforma-
tion:

AA,_ I E/. f I_ _ 0 I , o _ I I,- _,(k2 _'_2 _-_)-_2 _, -Fx_9}=0. 33). _,2+ 2_ x,2 (25.

Besides, the functions _I and _21 must satisfy the equation (25.12) and the boundary

conditions. Instead of solving this boundary value problem, it is possible to solve

the equation (25.23) of the Bubnov-Galerkin method, expressing the function of def-
lection in the form of a series

_,' = Co mo-_- C,m, + ... (25.34)

(where each term satisfies the boundary conditions with respect to w I ) and equating

to zero the coefficients of _C i. The function _[, determined from equation

(25.33), haust satisfy the geometrical boundary conditions for u I and v I . The

static boundary conditions for the tangential forces T] and T_2 will be automatically
satisfied during the solution of the variational problem; the higher the approximation

considered, the more accurately will these conditions be satisfied.

The variational equation (23.1) of N.A. Alumyae is very convenient for many

cases, because there we approximate the functions w satisfying the geometric bound-

ary conditions for w, and the functions _ satisfying the static boundary conditions

for the tangential forces, but these functions will not necessarily satisfy equation

(24.33). Here the index I was omitted for brevity; _, and uT are the projections
of the displacement on the normal and the tangent to the contour, given at any

arbitrary part of the edge contour. In particular, if tangential forces are given

along the entire edge contour and the function w satisfies the condition _w = 0
on the contour and one of the conditions Mi = Mi or _0__ on Ci , we shall obtain

the equation 0_,

f f{ D _a. + T,_k, + _,o+ .,)+ 2 T,,(_°,2+ _,,)+

+
(,0

2 o _

+ _,(k,+ _o) __ x,: -- 2..,,_,_}o,_da= O,

(25.35)

That is in essence the equation of the Bubnov-Galerkin method.
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26. A ShallowShellConsidered as a Plate with an Initial Deflection.

The Fundamental Equations in Oblique Coordinates

When taking a plane as the surface of reference o, we may consider the mid-

dle surface of a shallow shell before the application of the load as a surface obtained

from a part of this plane after the normal displacement w 0 and without residual

stresses; we shall assume that the stresses have been removed by annealing.

Therefore, we have to assume that in the formtAas of the previous section

kj= k,= O. (26. I)

We shall specify the position of a point on the rriddle surface

mation by the rectangular coordinates x, y, w ° (Figure 12).

of the surface a ° becomes:

a ° before the defor-

Then, the equation

z = _u° _ F(x. )'). (26.2)

X

Figure 12

The planes x = const and y -- const intersect oc along curves which differ only

slightly from the normal sections of the surfact. The curvature and the torsion

of these lines will be determined from (25.7), assuming B = 1, i. e. ,

____ x° ------ (26.3)
z_° _ _'x ax_ 0._2 L2-- dxOy 1, 2.

The elongations and the shear caused by the load before the loss of stability, when
the surface a ° turns into , ! , must be detern ined from (25.8):

(26.4)

In the other formulas in S 25 it is also necessa_ y to assume k z = k 2 = 0 and B = 1.

The theory of a slightly bent beam or plate given here has already been applied

in particular cases in the works of I.G. Bubno_ /0.2] and /0.3l. It has been given

in the general form, seemingly for the first time in 1939, by K. Marguerre

/VLll/. In the work byV. Z. Vlasov/VI.8]thistheoryhas been given in a rather
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modifiedform:thereheassumed that the displacement of a point of the surface

is specified by its projections on the tangents to the lines of intersection between

the surface and the planes x = const and y = const, and on the normal to this sur-

face. Denoting these projections byu[, v[, w_, we express in terms of these
the projection_ of the displacements on the axes el, e_, ,n (i. e., on the axes x, y,
w), which have been derived in this work:

Ox _y
(26.5)

Introducing these expression in (26.4) we obtain the usual formulas of the theory
of shallow shells* :

(26.6)

Thus the formulas (26.4) and {26.6) are equivalent. When deriving them it has

been assumed, as is generally done in the theory of shells, that the squares of the

rotations of any elements of the surface a ° are small in comparison with unity
because in our derivations we have used the equations

cos_=l - -_ _-'"_1, sin_=_-- 6 "_'_--¢P'
(26.7)

where q_ is half the angle subtended at the center by the arc which determines the

maximal cross-dimension of the considered part of the surface a0. If this arc

is part of a circle of radius R, the length of the corresponding chord being a and
the deflection f, the measure of the shallowness of the shell will be:

/ R_' a (26.8)
a 2a 8R

It is, of course, necessary to determine the upper limit of this quantity, on the

basis of the error admissible in using the approximate equations (26.7). It is often

shown in literature that a shell may be considered as shallow when a > 5f (see, for

example, ]VI.7/). In our opinion, such an extension of the field of application of

the theory of shallow shells is risky, because for a = 5f it follows from (26.8) that

a/R _815 and q"= 0.8; then, by equating to unity the quantity _,_:_.,_-_ ] - -'_- =

= 0.66, according to (26.7), we admit a gross error.

Therefore, we must also put a restriction, even in the general case, on the
magnitude of the initial deviation f of the surface a ° from the surface a: we shall

assume that f is maximal, i.e., of the same order of magnitude as the thickness of

the shell. Evidently, this restriction is not essential from the point of view of ap-

plications of the theory, because at the present state of the manufacturing technology
of thin-walled shells, the initial deflection is smaller than the thickness of the

she 11.

If

./'<< R, (26.9)

* In /VI. 1] we derived formulas (26.6) and other relations of the theory of shallow

shells in the above formulation, for general coordinates and for an arbitrary
surface of reference o.
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weshallcall the shell "very shallow" or "a slightly bent plate". In this case, it

is possible to simplify the fundamental differen:ial equations (25.12) and (25.33)

of the theory of shallow shells. With k t = k 2 = 0 and B = 1, they become, after
introducing the force function q,! and the defle,:tion function w according to (25.9)

and (25.22):

DaAw* - a2÷, (0,_4. 0,_, '_-t-2 _- 0,_ _1_0__)_])__0,_,Sy, x_x,-- a_* /-- <_a), (0x--_y

a,,i,,{ o,,_,+ v_, D
0_ l \ 0Yl 0Y1 J-P_0;

a,=, a,U_]=0 (26.11)
a)'_ " a_'_l "

(26.10) "

In fact, after introducing the total deflection

measured from the plane XOY, we obtain the equations:

(26.12)

DAAI" a_<#'l _w" #q,i . #_i" 8i#,I _"- ay--Y . -_,,+2 o-_y o_'-Fj- o,--_" oy---z-+p" =o;
(26.13)

(26.14)

where

?. = p -- Dat i_ _ (26.15)

is the equivalent normal pressure. When cons:dering a bending for which the total
deflection is considerably larger than the thickness of the shell, the underlined

terms in equation (26.14) may be neglected, prcivided that the conditions (26.9) are

ful_illed. Thus, equations (26.13) and (26.14) coincide in this case with the well-

known yon Karman equations for the bending of a plate under the action of a certain

equivalent cross-load p-.

If a very shallow shell is traced oi_ part c f a second order surface

°_' ,, _-,_,_xj+<x+o,+l,:le_==' -- Xl 2

o will be constant. In t _is ease p_ = p, and the equationsthe curvatures zi°,x,°, zu

of equilibrium of the curved plate with pronoun,:ed bending will have the form of

the equations of equilibrium of a flat plate.

The generalization of the equations (26.1() and (26.11) for a shallow shell with

varying thickness has been given in /VI. Ii/. 2he corresponding equations in

Cartesian coordinates are of the following forrr:

,_ i a,,i,,_i4__(1 ' a' /I _=',t,"_+ ,n

= ELt_-_-Y ) + 2 _ d,_' (26.16)ox Oy \ O_ Oy_ ] al,_ a_, J '

O" (DO_ ' '_-1-2(1 .. a' f_ae, x__ #a f,_o_, \

a, a,._i o, D a'_, ___ -t-o,,.o.,
Ox 1 Oy a dxay tx8_.,
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Whensolvingcertainproblems,asfor instancewhenstudyingslantedplates
(intheformofaparallelogram)or theproblemoftorsionalbucklingofacylindrical
shell,it ismoreconvenienttoreferthesurfacea toobliquecoordinatesx', y',
relatedtorectangularcoordinatesbytheformulas:

y'=y+xtg_, x' = x/cos ._, (26.17)

It has been assumed here that the angle between the axes x' and y' equals t +./2

and that the x axis is at an angle 7 with the x' axis. The derivatives with respect

to x and y may be expressed in terms of the derivatives with respect to x' and y',

by the formulas:

+ ,<0 0 + (26.18)

After carrying out these transformations in the equations (26.10) and (26.11), we
obtain:

Here,

A,= i/__(__+2sin _ a/__+q_ a, ,_
cosT,_\Ox '+ O_,'#v' -- _y" / (26.21)

is the Laplace operator in oblique coordinates.

The expression for the forces T,', T,'_, T:_, 7_1, referred to the oblique coordi-

nate axes may be obtained by considering the equilibrium of an element with the

slides dx, dy, dx'. From Figure 13,

1"_'_cos _ a_' = T.. ax + 1", ay,

(7".'-- T_sin_.)ctx'= L2ay+ T:,dx.

T2'lcos _ = T2, cost + T, sin_,

?2' --T=isln T _ TI=Sin ?-4- TxCOS_,
O_ pc:,,,

,J&?

T2dx_ "_

T,dv \ r_dx

Figure 13
(26.22)
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Besides.

I"i= Tl'cos_, Tp._ T_-- T_'sI.?. (26.23)

Whence, taking into account that

7"1= c_%, T12= T=, = _1' T2 _%

and also the expressions (26.18), we find

T,'_ 1- _@ T,'2 = T_'_= -- L__. __._IE__ Tz' i _,,_ (26.24)
CO$_ (_y,1 ' _o$(l 0.J ,Oy t ' COS? _X 'i

By analogy, we find the expression for the moments. Evidently, according to

(6.8) and (6.9) we obtain the same expressions, replacing in (26.22) and (26.23) the

quantities Tl, Tl2, T-.l.TI, TI: TI'2,T21and Tz' by M_,Mz,--M3, M2h --M_'_, MI',

--:H_', NL,'.respectively. Thus

M:,'_M2 -[-,4_lz tg_, Nlz -pM..sin? = M, sin_ -FM..,cos_,

(26.25)
M;2 _ DI]2cos _, J_ _ hl_'. _-._ sin%

Hence, by recalling that

-- D/d'_ ,_*_ M,z=--O(1--*)_ .....M,-- {,5;; + o_,,/'

and once more (26.18) using we find that

(26.26)
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Chapter VII

SOME PROBLEMS OF THE THEORY OF STABILITY AND

LARGE DEFLECTION OF RECTANGULAR PLATES

In Chapters VII-VIII, some problems in the theory of flexure and stability

of plates are dealt with, to illustrate the application of the general non-linear theory

of shells to the solution of particular problems in the simpler cases. To readers

interested in other problems of this kind. we recommend the monographs of
P.F. Papkovich /0.17], V. L Feodos*ev /0.25], and A. S. VolWmir /0.6/, in which

extensive bibliographies are also given. We also draw attention to the monograph of

A.R. Rzhanitsyn /0. 24/, devoted mainly to the investigation of the stability of sys-

tems of bars and plates without initial curvature.

S 27. A Theorem of P.F. Papkovich on the Convexity of the Region of Stability
of a Shell under the Simultaneous Action of Several Stresses

We shall consider the stability of shells under the simultaneous action of sev-

eral stresses, assuming that these stresses p_,(_, _ .... , p._.{a, _) are proportional
to the numerical parameters p_ ..... p. and the functions ?i ..... ?. remain fixed. As

an example, we can consider a cylindrical shell under uniform axial compression and
uniform pressure on its surface. By investigating a formula of type (25.31), charac-

terizing the variation _.9 of the sum of the deformation energy of the shell and the

potential energy of the stresses acting upon it, it is easy to see that it contains the

initial stresses of the shell T',, T_, T',2 only in the first degree. And as these are

linearly dependent on the parameters of the stresses p, ..... p. then, with fixed

displacements of the shell, the quantity _3 is a linear function of the parameters.

A3 _ ,_o -b- p,3_ +, . 4- p..9..

where .90, _91..... _ are coefficients dependent on the displacement of the shell.

The equilibrium of the shell will be stable if under any displacement the

quantity A3 is positive.

If one considers the quantities p_,... ,p_ as coordinates of the points of some

n-dimensional space, then the totality of the values of the parameters p_ ..... p_, for
which the equilibrium is stable and the totality of the points of the n=dimensional

space corresponding to them can be called the region of stability. P.F. Papkovich

/0.17/ has shown that the region of stability of an elastic system is always convex.

A convex region is a region having the property that every ray issuing from

any point of the region intersects its boundary not more than once. The totality

of points _ + c_ I, where c is an arbitrary positive number, forms the ray issuing

from the point r(p_ .... ,p.), parallel to the vector P(pl', .... pn').

Points on the ray will have the coordinates (p,--l-epf) ..... (p,,-l-cp.'). In order

to demonstrate the convexity of the region of stability, we shall assume the contrary,

that the region is not convex, and therefore under a monotonic increase of the para-

meter c and a displacement of the vertex of the vector _ + cF I along some ray
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issuingfromthepoint F of the region of stability, the moving point intersects the

boundary of the region of stability twice.

Here it is obvious that after the first intersection of the boundary for some

value of the parameter c t > 0 the shell will be unstable, and after the second inter-

section of the boundary of stability with c = c 2 > c_ the shell again acquires stability.
.As for c = c I the state of the shell is unstable, then for this value of the parameter

there will exist a deflection of the shell w I , for which the change in energy of the

system is nonpositive, i.e.,

Ag_0 with czc,_O,

where

_9 = 3o -I- (Pt + cp_') .9_ +... + _p. + r.p_') .9o. (27.1)

On the other hand, with c = 0 and with c = c 2 > c _ the shell is stable and therefore
at w = w I we have

A.9_O when c_O and when c=c_.

If some investigates the variation a._ of the energy of our system for a fixed deflec-

tion w I , then, according to (27.1) it will turn out to be a linear function of the

parameter c and therefore will be either monotorically increasing or monotonically

decreasing, or constant. But this contradicts th, previous three inequalities,

according to which with increase of c from c = 0 .o c = c_, _,-1.9 decreases and

with the further increase of c to c = c 2, A_ agai3_ becoming positive, increases.
Thus, our assumption of non-convexity of the re_ion of stability leads to a contra-
diction.

We shall draw some conclusions from the tt_eorem on the convexity of the

region of stability.

We shall first consider the stability of a sh.._ll under the effect of two stresses

acting simultaneously and characterized by the p_rameters P i and P2" The boundary

of the region of stability will in that case be a cu:'ve cutting off the segments Pl_ and
P2k on the coordinate axes whose sizes are equal to the critical values of the para-

meters p, and P2 under the separate influence of each of the stresses.

In the region of stability we shall consider :wo points with the coordinates

(p,, -- _,. 0) and (0, p2_--_)where _t and _l_ are sufficiently small and whose signs
coincide ,-espectively with the signs of the numbe__s p and p . In view of the

tk 2a "

convexity of the region of stability the straight liJ_e connecting the points indicated

will also belong to it.

-- -- b --_L.

Hence it follows that ff the stress parameters satisfy the conditions

p_,_r__, _1, r'_0,-'2_0, (27.2)
Pl* P_ PI_ J _k

the equilibrium of the shell will be stable.

The results obtained can be generalized to :he case when three stresses, cha-

racterized by the parameters p_, p2, and p3, ac_ simultaneously upon the shell.

Obviously, the points with the coordinates {p,_ _. 0,0), (0, p,, -- _, _)! and (_9.0, p_ --_).
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where r_, _2, and _a are any small numbers having the same signs as p_k,

P2k and P3_ respectively belong to the region of stability. Hence it follows that
the segment connecting the first two points will belong to the region of stability,

and so will any segment connecting the third point with any point of the segment

which connects the first two points. Consequently, the region of stability will

include every point of the area of the triangle, having for vertices the three above-

mentioned points lying on the coordinate axes. The points within the triangle satisfy
the relations

fl! ..]- _ P,__ _.]_ P_=I P' _0,/=[,2.3. (27.3)
P_ -- _ P_- _ P_k-- _3 ' Pll_

and consequently, every point of the parameter space which satisfies the relations

2_-{_P_.._ __ P_ _1, !_0, izl, 2,3 (27.4)
P,_ P_ P_ Pot

lies in the region of stability, for then one can always choose the numbers r,_, _r-,

and _,_ so that the relations (27.3) are satisfied.
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§ 28. Stability of a Long Plate under Simultaneous Longitudinal,

Transverse, and Shearing Stresses

We shall investigate the stability of a plate in the form of a long strip, freely

supported at the adges, under the action of longitudinal, transverse+ and shearing

Itresses. These stresses are assumed to be uniformly distributed along the edges

of the plate. We shall denote the respective linear forces by p], P2, and

In the literature /VII. l, 2, 3, 4/ one finds Wagner's formula for determining
the sets of the critical parameters of plate stressv8

°]2----(2+ 2VV+ ,_+ o_)(6+ 2 VT'-+o_+ +l), (a)

where

b2t bat b2t

_l--Pl.3O' P_2-D-' _l_-z':,_, o , (28.1)

b is the width of the plate, D_Ets/12(1 --v2).

T. V. Nevskaya has shown in her dissertatio t /VII.5/ that this formula is

erroneous. In fact, in the special case o 2 ffi 0, f _rmula (a) takes the form

(a, .-._ 6)' -- o12= 4. (b)

In that case, the boundary of stability will be the set of two branches of a hyperbola
(Figure 14).

B

Figure 14

Obviously, the origin of coordinates is in th_ region of stability. The ray

issuing from the origin of coordinates intersects t is stability boundary at two points,

which contradicts the theorem on the convexity of he region of stability.

In the literature /VII.l, 2, 3, 4/ one also fitds Wagner's equation for the sta-

bfllty of a strip clamped at the edges, which, for _2 = 0, has the form

+ ++°*) (c)

As in the preceding, it can be shown that this formula, too, cannot represent the

equation of the boundary of a convex region of stability.
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We shall investigate the derivation of the correct equation for the boundary of

the stability region for a freely supported plate given in /VII.S/. To solve the

problem we shall apply the energy method, choosing the trial deflection function

w =fcos _ cos 7(x--my), (28.2)

where ;, is the distance between two crests, measured along the x axis, m is the

tangent of the angle between the direction of the wave crests and the y axis. Along

the long edges of the plate this function satisfies the condition

w_O for y-.+b/2.

Along the short edges the boundary condition w = 0 is not satisfied. However, ff the

plate is sufficiently elongated, it is natural to expect that this will not cause sub-

stantia] errors.

The stability boundary will be determined from the condition that the variation
of the sum of the deformation energy of the plate and the potential energy of its

stresses be equal to zero. For a flat plate with k I = k z = 0, we obtain according

to (25.31) the equation

O=_v O%v _ . du t au 2 c)u c)v __

+m . =o.

(28.3)

The displacements u and v should be chosen so as to obtain, as a result of the com-

putations, the smallest absolute values for the compressive stresses.

It is easy to realize that the smallest values of the compressive stresses are
obtained if one sets u = v = 0. For convenience in the further computations, we

shall introduce an oblique coordinate system, setting

x--my=z, yrs. (28.4)

In that case it is evident that

a(..) 0(..4 o f...) = a (..,) a(.-)

ax _z _y as a= (28.5)

_e _fcos _s/b cos ,_z/_.

By making use of these relations, the evaluation of the integral in (28.3) can be

simplified; here, as the function w is periodic and the plate sufficiently long, it
zan, with sufficient accuracy, be considered equal to the corresponding integral

ilong one wavelength, multiplied by the number of waves in the buckled plate.

Using this and (28.1), we shall set up the equation 03/c)f=O or
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_{[1 + (m-- _)'; +[] + (,_ + _)']'}+2o, +
(28.8)

+ 2°2 [m a +" _ "'_;) j- *.,.... O.

To simplify the calculations we shall introduce the notation

,=(1 +m')(bt'A)', (_-)'= ++_ (28.7)

If we introduce this quantity in the equation (28.6), we obtain

II +ms+ 2_ + 6m'+ + _'(1 + m_)]+o,,_ ÷ (28.8)
-1-_2 (m2+ + 1 + m') - 2_,_m,_ = O.

Noting that in the equilibrium condition the variation of the energy of the system

under the possible displacements is zero, we shall determine the values of m

and qJ from the conditions

dY_lOm = O. d,:q/Od/ _ .)

or

_m [1 + S_ + ,p + o.. (4 + l)t -- -%,_ = 0; (28.9)

2 + 6m _ + 2_ + 2m% + _ -}- _.,m'- - 2_,_m = 0. (28.10)

Multiplying equation (28.9) by m/2 and taking (28.8) into account we obtain

(1 -[- t_f + _b -t- o_ -- _,3m'_b== I) (28.11)

Similarly, multiplying equation (28.10) by V and s1_btracting it from (28.8) we shall

obtain

(l-[-m:)(I -,),_+_,2):0, _|'1-1-o2. (28.12)

Introducing this expression in (28.11) we have

_._m ffi 2 + .91/'T t _2 +_. (28.13)

Subtracting equation (28.10) multiplied by _ from .*quation (28.11) and using

(28.12), we obtain the equation

a,=/m = 6 + 2 V I q- a., 4 o_. (28.14)

Multiplying (28.13) by (28.14) we obtain the required equation for the boundary of the

region of stability:

• ,)=(2+2 IV-T+ ,: _-_,) (6 +9 V I--F o, t_,). (28.15)
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29. DeterminationoftheReductionCoefficientofanInfinitePlanePlate
SupportedbyaRibbedNetworkunderLongitudinalCompression

Weshall consider a wide plate, uniformly compressed in the direction parallel

to its short sides. As long as the load compressing the plate is less than the criti-

cal load under which loss of stability occurs, its dependence on the mutual approach

of the edges is linear. However, when the compressing load exceeds the critical

value, then the further approach of the plate edges proceeds almost without increase

in loading. Thus we see that the "specific resistance" of the plate, L e., the ratio

of the compressive load P to the mutual app_-oach of the edges, starting from the

moment of the loss of stability, will decrease in inverse proportion to the approach

of the edges towards each other.

We call the ratio of the load P compressing the plate to that load p, which

would be necessary to attain a given mutual approach of its edges without buckling

the "reduction coefficient" _ of the plate for a given mutual approach of its edges:

=/_/P' (29.1)

The merit of introducing the concept of the reduction coefficient into practical

building calculations belongs to I.G. Bubnov /02.3]. He investigated the combined
work of a wide plate with ribs, placed along its shorts edges. If the ratio of the

plate width to the length is large, then one can consider that the loading necessary

to compress the plate after the loss of stability, without very large deflections, is

defined by Euler's formula. The loading P, as had been shown earlier, can be
considered as equal to the compressive force at the instant of loss of stability of

the plate:

p_a_s. (29.2)

Here s is the cross-sectional area of the plate, and as is the stress appearing in

the plate at the instant of its loss of stability, defined by the Euler formula. On

the other hand, it is obvious that ifthere existed supplementary supports and the

plate did not lose its stability, then the stresses in the plate would be equal to the

stresses o c in the ribs supporting the short sides of the plate; then the loading

of the plate P' would be defined by the formula:

/Y z a,S. (29.3)

Taking account of (29.1)-(29.3) we obtain for the reduction coefficient the quantity:

_ z l/n, n _ a,/es _> l. (29.4)

I.G. Bubnov in his works /0.3/ considers also the definition of the reduction

coefficient of twisted plates of large width having an initialdeflection (see /VII.6/).

We shall further consider a narrow plate, i. e., a plate with a small ratio of

width to length. In that case, a considerable increase in membrane stresses will

occur under compression even after the loss of stability. Under uniform compres-

sion of the edges, when all the points of its transverse edge are uniformly displaced,
we shall have to consider the fact that while the middle part of the plate, removed
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fromthelongitudinalribs, hardly resists further reduction of the distance between

the transverse edges after the loss of stability, the deflection of the parts close to

the longitudinal ribs is made more difficult, and therefore in those parts of the plate
stresses can appear which are considerably larger than the stresses in the middle

of the plate. This leads to the fact that the redu_ tion coefficient for a narrow plate

will be much larger than the quantity indicated b,-" (29.4).

A number of authors /VII.6/ occupied themselves with the problem of determ-

Ining the reduction coefficient. By starting from insufficiently well-founded hypo-
theses, they derived a series of computational formulas, which can be considered

only as first, rather crude, approximations to rt ality.

Among the existing solutions of this problem, the solution of P.A. Sokolov

/0.17/ deserves special attention. He considered the problem of determining the
reduction coefficient of a plate of very large dimensions, supported on a network

of mutually equidistant longitudinal and transverse ribs. We shall denote the dis-

tances between two neighboring longitudinal and transverse ribs by b and a respectively.

The equation of equilibrium and the equation of compatibility of deformations of a

flat plate are obtained from {26.10) and (26.11), setting w0 = 0 (in view of the
absence of initial bending). If, as distinct from the above, one considers one move-

ment as positive when its direction coincides wit]: the positive direction of the
deflection, these equations will have the form

AAec=Et[( o_,J'_ O_ 0_,, 1. (29.5)
Lt o_<o_/. Ox1 0),_ j'

DAAw I _ 0:._._'t. 0:_l 0_._ _ t-2 O:o_ 0hoL p=O (29.6)
Oy_ Ox! 0£_ Oy= OxOy OxOy

Here w i is the deflection of the plate, _ is the stress function giving the membrane
stresses

0_.L 0_.1. d24,
r_ = T._= -- r_-. ,

Or: ' OxI ' OxO).

P is the transverse pressure on the plate, and x ;rod y are rectangular Cartesian

coordinates. We shall effect a change of variables to dimensionless quantities

which considerably facilltate the calculations:

_-..7.-*1, _= El_#, _12x_Ib, _=2y,_/b. (29.7)

Then the preceding equations will take the form

where

AAq_=(0'w _ 0_, ,_'_, (29.8)

,'---------Ta_- __. o-T - - ,W " a÷ _-12 ( i - o_ll .

01¢ d_u,

-{-2 o:.a-_ " o:.o,, p_ =0, (29.9)

b, _ o,(...) -F 02-(=')-
P': I6--s-__ p' A("')---O,'_- 0_? " (29.10)

Utilizing the previous relations, it is not hard to ,:onvince oneself of the correctness

of the following theorems on freely supported sire lar plates which we define as those

having the same ratio of their sides and divided b:' ribs into the same number of

strips.
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a) Similar plates which are under transverse loads only. have the same

relative deflections w0 if the transverse loads acting upon them are in the ratio

Etd/M;

b) Similar plates, which are under longitudinal loads applied to their edges,

have the same relative deflections w, if the longitudinal loads per unit length of

the plate edges are in the same ratio as the corresponding values of Et 3/b 2.

Hence it follows that for similar plates, the critical strains under which infinitely

small bucklings occur, are proportional to the respective values of Et 2/b2, and

that to the same relative deflections of the plate correspond the same values of the

ratio T L/Tl,k, where by Tt, k is denoted the critical value of strain for the stvrt

of buckling of the plate.

We shall clarify the mutual relation for similar plates between the shortening

of the distances between the transverse edges, to which correspond the coordinates

x=(2Nt-_-l)_ G x_ /I .

Here it is assumed that the length of the plate L is divided by ribs into 2N t + I

parts of length a, and that the origin of coordinates is situated at the center of the

plate and the axes are oriented parallel to its edges. The decrease of the distance

A I between the transverse edges of the plate is given by the formula

L.12

At= - C Oul dx.
J dx

--Ll2

According to (25.8) and (26. I0), in our case

tx z dttl "_- I (dwl_2 r,--_r, I /S_ _',_\

ox 2 \-a_-/ _ Et Et _ _y" 0_,' ) (29.11)

_ av 2 k ay I _ Et \ Oxt O.v_/

avJ at._#_,t ott,x o,.t,_ 2 (1 + ,,) 0%
2,,, = _ T 4 o., o_, --E/-- ' _.,dy'

L,i2 (22. 12)

In order to attain such an approach of the plate edges in the absence of buckling,

one would have to apply the stresses

T/ _ EtA/Lt.

We shall assume that along the width of the plate L 2 there are 2N 2 + I strips.

Then the total load in the absence of buckling of the plate would be

P' _ -- LaT_' = EIA_ L=/Lt . (29.13)
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Inreality the load applied to the transverse edges of the plate is

- _,+ .
/ r,'_y=-, _ V,_,.

).,t2 _ ,12

Making use of the dimensionless variableB (29.7), we obtain the formulas

._= _P = L, . -,, (29.14)

p, c, ,, ± (k=, .?._fF_ "¢
-x,

where

).l_(2Nl"_l) a'_ ,X2_i/N;+I)..-;.-,

Hence it is apparent that with the same relative deflections of similar plates the

reduction coefficients are also the same. This theorem can be quite useful for ex-

perlmental determination of the reduction coefficients.

Utilizing simLlarity considerations, one can limit oneself, in order to simplify

further calculations, to considering a plate, which is divided by a rib network into

strips with the dimensions 2 n a/b and 2_; the ntodulus of elasticity and the thick-

ness t of the plate will be assumed equal to unity.

Let the plate be under the action of loads compressing it in the longitudinal

end transverse directions, where the mean shearing stress in the plate is zero.

In that case it can be expected that the deflection will be symmetrical with respect

to the centers of the strips; therefore we give its approximate expression in the

form of an even periodic function of the coordinates:

M N

,=-. (29.i ,
_=-L zmml \ a

The coefficients Amn of this formula shall be de ;ermined below from energy consi-
derations.

Obviously the expression (29.15) satisfies tt_econditions for the absence of

deflectlon at the points of contact of the plate with the ribs. Substituting it in the

rlght-hand member of the equation (29.8), after simple trigonometric transforma-

tlorm, we obtain
2N

AA_ =-- 2 m _ COS n_,D_ cos (29.16)
m-,0 m,.o

where Din, are second degree algebraic polynomials in Amn :

D,o = -- (i'/32)(A_] Jr 9A_, + 25A_, + 2A ,A,= + 2A,,A,,),

Do== -- (_'/4) (At]At= +A,,A.), Do, = - (9_'/32) (A_=+ A,,A,,),
(29.17)

o.... _,,,,(±A,,A,,+ A,,A,,+ _A,,,,,_,+ a,,,_, + A,,A,=),
D2, = -- _' (A,=A,, + 4A,,A. + 4A=tA,8).

D,, = -- (_t/16) (A,,A=, + 9A,tA,a Jr- 25A, A_, + 49Aj=A=,),

D=_= -- (_/4) (A,t.4=, + 16A==Att), D_ = 0.
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From these formulas one also obtains the expressions for the quantities

D01, D20 ..... D13, if in the formulas given one interchanges the indexes m and

n in the quantities Amn.

The particular integral of equation (29.16) is given by the formula

_1 _ -- COS rr_ COS n_.
(,n_' + .2)_

rn,,-o a _0

(29.18)

The general solution @ of equation (29.16) is the sum of the particular integral

¢ and the general solution @o of the homogenous equation

(29.19)

_=%+_o. (29.20)

i+e.e

Here, in order to simplify the problem, it is assumed that the plate is displaced

relative to the ribs in a plane tangent to the plate, i.e., it can slide along them, but

cannot separate itself from them. The reduction coefficient thus obtained from the

plate will turn out to be somewhat lower, which will lead to a rise of the safety

factor of the structure. In view of the fact that the ribs do not transmit any tangent-

ial forces to the plate, the stress function will have no discontinuities in its second

derivatives which define the membrane forces in the plate.

The type of formula (29.18), representing _1 as a function with continuous

derivatives, accords with our assumption. To determine the biharmonie function

_bo we shall temporarily make the assumption that the plate we are investigating

extends to infinity in all directions, and we shall require that the function _0 char-

aeterizes stresses, whose values are bounded in the infinite plane. Here, the

second partial derivatives of that function with respect to _ and +] should be

bounded at infinity and, therefore, the function A@0 should also be bounded, which

is harmonic, as it satisfies the Laplace equation: h(h_0)z0. But, as is well known

/VII.9], a harmonic function bounded everywhere can be only a constant, i.e.,

_o _ const _ C.

Hence follows that

%=C-5-+ x,

where X is a harmonic function. Consequently, the function @*X/d_' is also harmonic,

as

A (_x/o_') = _ (Az) = O.

Butd'x/d_2= d_0/_ I --C is a bounded function and+ therefore, from the theorem

just mentioned d+X/_.== const. Therefore, d'_0/__ is also a constant.

In an analogous manner it can be shown that

d_q)o/d_' = const, O'¢o/d_o_ = const.
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Henceit follows that _])o is a second degree polylomial in _ and _] in which the
linear terms can be set equal to zero, as they do not affect the values of the mem-
brane stresses. Thus,

(29.21)

where Pl' P2' _ represent the values of the meat compression and shearing stresses.

H the plate has finite, but nevertheless sufficiently large dimensions, and is support-

ed on a considerable number of longitudinal and transverse ribs, then it can be

expected that for the majority of the plate strips, with the exception of those which

are close to its boundary, the stress function is _ufficiently well represented by the

formulas (29.18), (29.20), and (29.21). To determine the deflection of the plate we shall

make use of the minimum total potential energyprinctple, accordingto which the equilib-
rium state of the plate is characterized by a minimum of the sum of elastic energy

ol the plate and of the potential energy of the loads acting upon the plate:

._ = 3d,_l_- 3. - A = _nin. (29.22)

Here _defl is the elastic energy of the deflection of the plate, 3_ is the elastic

energy of the membrane stresses, and A is the w )rk of the external forces.

The work of the load compressing the plate along the axis x is

Ai _ -- i plAjd_= pl |-- a;w_,
J_

Analogously, the work of the load compressing the plate along the y axis is

A:_p_. _ ,
-L_ --k t

The work of the shearing loads, applied to the tr_ nsverse edges of the plate is

An analogous expression can be obtained for the work of the shearing stresses, ap-

plied to the longitudinal edges of the plate.

The work of all the shearing loads is equal to:

In our case, when E = 1, t = 1, k_= @, by making the use of formulas (29.11), we

find
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A = A' q-A' t A= = P' " _= { k ¢I_1J

+P=L_ = "o: 2\o,_ .' J _+
(29.23)

Further, from formulas (29.11) and (17.37), one can easily derive the expressions

(29.24)

where in our case D= 1/1'2(1 .... :).

Using (29.20) and (29.21), and setting in what follows • = 0,

formulas (29.24) can be given in the form

_d dl

-F(p,+ P"-)=-- 2 (l-I-');'P:_-Ip_--p:)a'D,--

--2(I +',I(p, -FP_

the first of the

Integrating by parts and using (29.18), it is not hard to show that

f (0_,, o_+, "% _A!_ :.,_ :

ii( i':'-. =o.

and the last three terms of the expression for ,9,, are zero. Thus,

1
(29.25)

Analogously, the second of the formulas (29.24) can be simplified and brought into

the form:

3_n= D: f (&_)= a_d_. (29.26)

Introducing (29.15) and (29.18) in the expressions (29.23), (29.25), and (29.26), and

carrying out the integration, we shall obtain the following expression for the total

energy of the system:

'_M 2N

-}- A_ (Dq-p,) m (29.27)
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From condition (29.22) follow the equations:

bglc)A,,, = 0

or

÷
'(m_ -+-n=)_ " OA'-"-_

-=,. J).n=l, 3 .... ,

where D._ are quantities defined by (29.17). As that system of equations is non-

linear, several states of equilibrium can correspond to one and the same loading.

Among them, the stableness will be those for which, under arbitrary small

changes _Am. the inequality

m,_, OA._ -_--, , _A,,,n_A,." ,,' _ O. (29.29)

is satisfied. In order that the quadratic form in tie left-hand member of the above

should be positive, it is sufficient, as is wed kno_ n, that the principal minors of

its matrix be positive. The relations thus obtained allow one to pick out from

the totality of all the solutions of the system (29.25) those which correspond to

the states of stable equilibrium.

Having determined A from (29.18), (29.21), and (29.20), we obtain O,
rn "

and then we calculate the reduction coefficient _ from (29.14).

Figure 15 gives the curves of the dependence of the reduction coefficient on

the magnitude of compression of the plate.

L00

--Graph of reduction ce_.fficients _ --

11,'_'_ I'll_ lo,... J ' ' '

_2 to 2.o a.o _o _o vo _o _2 _, 2o 3o 40SO,*,h

Figure 15

Here the values of _ are along the ordinate _ and along the abscissae the

values of the compression parameters _,,A_ rep] esenting the ratio of the mutual

approach of the plate edges aT to the value of th{ shortening Ash of the

plate at the instant of stability loss.
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In conclusion we shall prove that in the case under consideration, the edges

of the plate remain straight after buckling.

In fact, from the third equation (29.11) we have, after differentiation with

respect to y

a,,_= __ 2(i + _. a:2_- _ o_('a.,,.,_ . o,,._"1- °:''_
Oy_ Et O_bv _ 0;, \ dx dy / dxOv "

Differentiating the second of the equations (29.11) with respect to x, we determine

from it the value of d'-'vZ/axOY:

O,_Oy -- £t \ _x a --' _ ] Oy OxOy "

Introducing this expression in the preceding equation, we obtain

• v O_ ) _Owl O'_l (29.30)o,,u_....._a 2(1+, ) _ l('O*_ Ox--'_Ya _ 0"_'-_' Oy'°Oy_ L:'t OxOy2 Et \Ox=

Introducing in this the formulas (29,15) and (29.18) we convince ourselves that

a"'--L = 0 :to,. x = 4- (2N, + I) a_/*.

This quantity is zero also at the values of x=-/-_-- , corresponding to the
edges of the central strip of the plate, which testifies to the fact that they do not

twist.
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S 30. Determination of the Reduct:on Coefficient Under the

Combined Action of Compressive _nd Shearing Edge Loads

We shall consider the problem of determiiffng the finite deflections of a plate,

supported by a large number of uniformly spaced longitudinal ribs and loaded at its

edges by shearing stresses r, a longitudinal stzess Pl' and a transverse stress P2"

To simplify the investigation we shall initially assume that the plate can freely slide

along the ribs, having no possibility of separating itself from them. This problem

was solved by Kromm and Marguerre /VII. 10/.

As experiments show, with the buckling of the plate due to the action of shear-

ing loads, diagonal waves appear on its surface (Figure 16L

--t
--!
--!
--t

--t

t I II l t 1

t / / / ,+_ ,_.__.______/___i/!
• _ - / i / / /
A, , , - ,',II--

' /0i " t / " i /Z'_'_.... _-..I1----
I,,/ll i"llgi '' i" lt _t

.",",",",'_J_,",ll--

TTtttiti

Figure 1{

Taking that into account, the deflection of :he plate can be approximated by
the function

w_fcosTcos-_(x -my).
(30.1)

Here b is the distance between neighboring ribs, 1 is the length of the segments

cut off by the wave crests on the axis of abscissa, s, m is the cotangent of the

rise angle a of the waves with the abscissa axis. Introducing the expression

(30.1) in the compatibility equation {29.5), we sh dl obtain

7<,<-,,,.,,,

Analogously to the preceding we find the solutio_ of this equation, which satisfies

the boundedness condition of the membrane straJns in the infinite plane:

=-- _' cos _(x my)}+32l/t b ' M(1 , ,

+ P_--.Y---*4- p,x*

(30.2)
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Thestresses at the plate edges are defined by

T2 = a,¢ _ _t_ cos (x -- my) 4- P,,
Ox--_ --_b_(I + m_)_

T_z_- a'+_ £_,r_rn cos(x--my)--j-T.LT_T-- Sb,---'(l--+,.'_--'

Consequently. formula (30.2) represents the stress function for the ease when plate

edge is under a set of uniformly distributed loads P l, _. and P2, and periodic

loads, represented by trigonometric functions. But the influence of the periodic

loads upon the state of strain of the plate decreases rapidly wlth distance from its

edge, and therefore formula (30.2) will be sufficiently accurate in the application
to the parts of the plate which are not too close to its edges, as also in the case

when the plate edges are only under the above-mentioned uniform loads.

By using formulas of the type (29.24) and (29.23), one can determine the

elongation energy of the plate and the work of the external loads; there it is con-

venient to first calculate the corresponding integrals along the surface of a single

buckle of the plate, and then to multiply the quantity obtained by the number of half-

waves in the buckled plate. Uncomplicated but somewhat lengthy calculations show

that the potential energy of the plate and its loads is given by the quantity

Is'l* (I 4-p 4) 1 It ._ 13" +'gdefl-- A _ L'Etb t L_ " (l+m')' £_t" _ Pi 4-'_ P_ --

,] ['"_ +p'P+4 ',,_.L_' O,]}4-J+_L 0 ' + -' (so. 2)
_,f2 p,

+p,Ltb--_. l+,n' 4-

-t-p2L,b 14- l+mt/ "_-" l+m_"

The accuracy of this formulas will be sufficient, if the number of buckling waves is

large, the plate is long, and once can roughly neglect the energy of those parts of

half-waves which are situated at the plate edges.

Here we introduced the notation

_2 = b'_(1 + ra')/P. (30. 4 )

The state of equilibrium of the plate is characterized by a stationary value of the

total energy of the plate and its loads; therefore we shall determine the values of

the parameters f, _, and m, characterizing the plate shape, from the relations

0 (3..+ OdeS-- ,4.)10/= O, a (3. + 3d_fl-- A)/O_ = n, (30. 5)
0 (3. + 3del- A)lOm = O.

As can be seen from expression (30.3), these equations will contain the quantities

P t' P2, and _ only in the first power. Solving them, we find the relations

-- p, = _-"[2 + 2p -- tat (5 + 2_: + p)] + (3 O.6)

lib* L P"0 + m')" '

p_
- ,,,._- T (, - _.,)+ t_'(' (..-¢_'_'. (30. 7)16b_\1 +m-/

"-" " _i_.-_._ (3o. 8)
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Here we introduced the notation

p*-- _ • _ (30.9)

To simplify the calculations we sha].l have ;o confine ourselves to the conside-

ration of some special cases,

We shall first consider the case where trarsverse compression of the plate
is absent

p_--O. (30.10)

We shall start by clarifying the relationship between the longitudinal compression

and the shear at the instant of stability loss. To that end, we set f = 0 in the

formulas (30.6), (30.7), and (30.8). Then, using (30.10), we obtain from (30.7)

_=l.

Introducing this in (30.6) and (30.8), we obtain

-- p, m p* -- 2p'm2, _:._ 2rap*.

Determining the value m from the last equation and substituting it the preceding

equation, we obtain the equation for the stability boundary of the plate under a

simultaneous loading by shearing and longitudinal loads

- p,/p. = 1 - (_/V_ p*)'. (30. ll)

l_y setting T = 0 in that formula, we obtain the c -ttical value of the compression stress

in the absence of shearing stresses

p,k _ -- P'.

In an analogous way. setting Pl = 0 in formula (30.11)0 we determine the critical

value of the shearing stress in the absence of compression

_Ft V-_, 0 (30.12)
• * = V-2p* - t ---,, " - 3-T_--'

This value differs by roughly 6.5% from the exact value of the critical shearing

stress of an infinitely long strip.

Introducing (30.12) in (30.11), we obtain the approximate formulas

We return to the general case of finite deflection_ of a plate. According to formulas

(29.12) it is easy to compute the mutual approach Az of the transverse edges of the

plate (where in that formulas one should extend tte limits of integration along one

half-wavelength of the buckling, and multiply the result by the number of half-wave

LI /1):

4, --/.., [(-- p, -[-,p=)/Zt d- dJ' '/SP]. (30.13)

In an analogous way one computes the transverse contraction A 2 of the plate
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_t = 1•,- L,kp,+ [(;)+., , ,30.1,)
where L 2 is the plate width.

Assuming that the ribs undergo a contraction, equal to the mutual approach

A1 of the plate edges, it is easy to determine the stress appearing in the ribs:

= E (_,IL,) = _ -Jr E"'l'ISl'. (30. l 5)

We shall now compute the shear along the plate contour. For this we note that

the shear angle of the projection of a small rectangular element of the plate on the

plane of the plate contour is

2.j2 _ __J _- :-_ "
Oy ox

This quantity is different for different points of the plate. To characterize the shear

angle for the plate as a whole we shall compute the mean value of the shear of its

elements along the plate surface:

,= =.;,=[f f

where S is the plate area.

If one makes use of the relation connecting the stresses and the deformation

of the plate

then the value of the mean shear of the projection of the plate elements can be re-
presented by the formula

Introducing in this formula the expressions (30.1) and (30.2), we shall obtain

Taking into account the fact that in our case P2 ffi 0, we obtain from equation (30.7)
a formula for the determination of f:

.Et_/i -- P* (8" -- i)(I -{.- m'p. (30.17)

Introducing (30.17) in (30.8), we obtain an expression for m in terms of • and _:

The preceding relations allow one to construct, for a given value of shearing load,

graphs of the dependence of the VlL]ues of pj_ and f on the value of the mean

longitudinal stress p z in the plate. For this one has to take a series of values of
the parameter /] and, by means of the formula (30.18), compute the corresponding
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values of the quantity m. Having substituted the values obtained in formula (30.1Y),

it is easy to calculate the corresponding values ef f, which can be used directly to

compute with the help of the (30.6) and (30.15) th,: corresponding values of Pl and
01. According to (30.16) one can determine the shear angle of the plate contour

and consequently also the effective shear modulu_ of the plate:

Gs -- v/T.

We shall now show how one solves the problem for the case when the longitudinal

edges of the plate are so clamped, that the distance between them cannot change.
In that case the quantity Pz wlll be determined by means of the formula (30.14),

from the condition that 42 is zero:

Introducing this expression in (30.7) and taking account of (30.4), we shall obtain

the equation

"*_-(l-m)+,p, +Ei-'_'12+ 2,,,p,+ _l=o (3o.19)
16bJ L (I '+ m s) (I + m2) :j J "

Thus, we have the system of equations (30.6), (30.19), and (30.8).

Also in that case for a fixed value of • one can, by taking a series of values

of _, construct curves of the dependence of the quantities p P t and f For
|0 • •

this one must first eliminate the quantities Pl and f2 from the indicated system of
equations, which is not hard to do, as they enter in the equations linearly, and then

/d_ 0 _ A,--",az=O I

0.6 _r

04 '._,e- ..

0 ,,' 2 J 4 t- 5

Figure 17

to solve the equation obtained for m for a series t,f values of _. Inasfar as the latter

turns out to be complicated, it can be solved only approximately, for example, by
graphical methods.

In Figure 17 are shown the dependence curves of the effective tangential shear

! de for the value _/_*, where _*zV 7,_*. The upper curve relates tomodulus _-" d-T

the case when there are ribs which hinder the mulual approach of the transverse, as
well as the longitudinal edges of the plates:

Here it is assumed that the ribs do not hinder the shear in the plate contour.

Below it are situated analogous curves for the cases 1) when the ribs hinder the

mutual approaching of only the longitudinal edges ,)f the plate; _ffi----0, pa 10;

2) when the links hinder the mutual approach of the transverse edges only;

nj m0, p2 _ 0; 3) for the case when both pairs of outside edges can freely approach

each other; p = p = 0.
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' $ 31. Determination of Large Deflections of
a Plate of Finite Dimensions

The solution, obtained in Section 29, of the problem of the deflections of an

infinitely large plate supported on a network of rigid ribs along which the plate can

slide, will be applied to the solution of some problems of large deflections of plates

of finite dimensions. For this we shall turn our attention to the central strip of

such a plate, whose edges are defined by the coordinates

As has been noted above, after the deformation, the edges of that strip remain

straight. Besides, by using (29.18), it is easy to show that at the strip edges the

shearing stresses are zero.

Thus, the solution found by us for the infinite plate represents the deflections

of a finite plate of length 2,/8 and width 2=, under the action of such loadings upon

its edges that the following conditions are satisfied:

1) at the edges the deflections and the bending moments are zero;

2} at the edges the shearing stresses are zero;

3) the plate edges remain straight after bending.

Further, we shall consider the problem of Section 29 in a changed form, namely,

we shall assume a rigid clamping of the plate to the longitudinal ribs. There, for

simplicity, we consider that the plate can, just as before, slide freely along the ribs,

but cannot separate from them. We shall further assume that the ribs are absolute-

ly rigid with respect to flexure in the plane perpendicular to the plate, and their

torsional rigidity is very small. The solution of this problem was given by

G.G. Rostovtsev /VII.7/. At the strip boundaries, in our case, the following
conditions are satisfied:

w_O for _=_-_/_ and for 'q=+'_. (sl.1)

It is natural to assume that the deflection is antisymmetrical with respect to the

ribs and that therefore the ribs remain straight after the deformation. From sym-

metry considerations one can conclude that the deforming membrane stresses near
the transverse ribs are zero:

T,_= W,l,=0 for I_-{-_16. (31.2)

The condition that the curvature of the strip edges after the deformation be zero

is the following:

azu--J--0 for I=-_u/#. (31.3)

Taking into consideration the relations (29.30) we shall obtain

(2+_)_, +_ __-. _--
for E= +_ t/_. (31.4)
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Inan analogous way one can obtain the linearity condition for the longitudinal edges

of the strip:

-_-l -_ °_'w=:(I for _---_-_. (31.5)

Thus, the solution of the problem reduces to the determination, trader the boundary

conditions indicated above, of the deflections of one strip clamped to two longitudi-

nal ribs with cross-sectional area F*, equal to half the cross-sectional area of the

ribs supporting the plate, since each rib of the plate simulatenously supports two

neighboring strips.

We shall consider a strip of length a, width b, and thickness t, bordered by two

stringers of area F*. As the longitudinal ribs are rigidly clamped to the strip

edges, their extensions _ and the extensions of the strip edges adjoining them
should be the same:

= '_{__ (31.6)tilt _ II
Et _Oy !

The stress in the stringer P (x) varies along its length as a result of the action

of the plate upon it according to the following law:

= p,, f,],_ _.,,
(31.7)

-- J d-_y [ y _ _ .l, dx"

Here P_ (0) is the stress in the longltudlm_1 rlb at the point x = 0.
this, we can write formula (31.6) in the followin_: form:

a

..- ±r..(oj- r
_F_, L J oxo.v (31.8)

-±(_ -,_1
Et\Oy' Ox'] I.,,-- - _12

Utilizing

In particular, setting x = O. we have

( I (31.9)

Differentiating (31.8) with respect to x, we find

1 ,J'._ _ ! [ a'+ vo%) for y-- hi2. (31.10)
L'F_ "Ox,_v -- _t \'_r' axV

Carrying out the change of variables (29.7), we easily obtain

x

P.(_)_P.t(O)-- _Et' . 2: _' dx
J _, ox_._, "
o

p.(O)=Et.(_'_ F,('a'e_ 0'*'_
\ b / \ _; Oxs] "

(31. II)
bt O_P O:_P O_q>

._------v-- 'or v/_-- _.

For a plate with the dimensions a :2_/_, b=2_ an_ thickness t = 1, clamped to ribs

of cross-sectional area F, the preceding formula has the form
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--!._------ _a# _v__ for,_ .... (31.12)

Comparing this equation with the preceding, it is easy to notice that the problem of

determining the deflections of a strip with dimensions a and b. c]amped to ribs of

area F*, reduces directly to the similar problem for a plate with dimensions _ -:

and 2r,, clamped to ribs with cross-sectional area F, defined by the relations

We turn to the consideration of a strip with the dimensions

a=2_l_, b=2x, t=l. £=1. (31.13)

In that case, x=l_, _=y, @=_.

Analogously to the above, one derives the boundary condition which has to be

satisfied near the second stringer:

I o_¢ _ _ for _=-. (31.14)
_- ' _x_ _xa_, va-5-

As before, we shall look for an approximation to the deflection function in the

form (29.15).

We shall take the expression (29,18) as the particular integral qh, of the

compatibility equation (29.16).

The solution of the compatibility equation satisfying the boundary conditions

will be looked for in the form (29.20) where W0 is the solution of the homogenous
equation (29.19):

2M

%= /.(y)cos,.Sx + _ T" (31.15)

Introducing this expression in the left-hand member of equation (29.19) and equating
the coefficients of ¢osm_x to zero, we shall obtain the equations which must be sat-

isfied by the functions fro:

ay* ay.

(31.16)

In view of the symmetry of the deformations, w is an even function. It is natural

to expect that the membrane stresses T_ and T 2, and consequently also the strain
functions will be even functions of the coordinates. We shall therefore consider only

the even solutions of the equation (31.16):

)'I(y) = C,_,ch(m_y) -[-C,_,ysh (roSy). (31.17)

Taking into consideration (29.20), (31.15), and (29.18), we shall obtain
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2_ 2N

_ cos ml x cos ny -{-
(mzi_+ aS)J

m

2M

÷ _ cos rnaxlC,._ ch (mey) ÷ C2,.y sh (m6y)l -I-

2---- 2 "

(31.18)

Introducing the expressions (29.15) and (3 I. 18) in the boundary conditions (31.5), we

shall obtain the equation in which it is necessary that the coefficients of

cos mSx (m _ I, 2, ..., 2]H) be equal to zero in order that it be satisfied for all values
Of x.

--Cj,.(m_)3([+ v)shrnSx--C,. [(ta_}*_:(IJr v)chmSx --

-- (._)2 (1-- ,) sh m_] -- 0 (m _I ..... 2N/). (31.19)

One more equation for the coefficients is obtained ff one introduces (31.18) in the

equation (31.14) and equates the coefficients of the functions slnm_x in the

expressions obtained

2N

i ['_o,,,,,._(__),,+, C,. (mS)' sh ne,_ --
7 L Z_ (m_' +,')"

Amw,l

-- C,,,,(mS sh mS_ + m_ ch ,._,r)]-- (3i.2O)

= -- C,,,m_ 1 (1 -)- ,) ch mt, t Jr C_, I-- (e_8)_ (1 Jr ,)-sh mh --

-- (mS)Z-2 ch m_] (m=,. 1, 2 .... 2,W).

Solving the system of equations (31.19) and (31.20) with respect to the two unknowns

Clm and C2m . G.G. Rostovtsev obtained explicit expressions for these quantities

in terms of the deflection parameters Am, and the quantities Pi and P2"

In order to clarify the physical meaning of the quantity Pz entering in equation
(31.18) we shall compute the mean value of the stresses T2, acting per unit cross-

section of the strip, parallel to the x axis:

_la xl!

f ,:=,.. ,31:i,
-- _iI --Kla

Thus, P2 represents the mean value of the at'sea T 2. It is the same for all
the cross-sections parallel to the x axis. In an analogous way one calculates the

mean value of the stress T, acting per unit length of the cross-section parallel
to the y axis:

r,,--._ Fr,ey--! l"_-- - ly-

2,x

Pl Jr )' cos m_x [C_.2m_ ch m_=Jr

Ji- C_. (2 sh mS_ _ 2m8. ch, a.)l.

Hence it follows that the mean stress in the cross-e ection depends on its position.

This is natural, since a part of the longitudinal loa( is taken by the longitudinal ribs,

and that fraction varies for different points of the r:b. Setting x=.m_ in the pre-

ceding formula, we shall find an expression for the quantity p in terms of T _c:
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_[_| = TIC (__ ])M [C|_'2/_ ch m_lt +

rn_l

+ C2,_ (2 sh ta_*t + 2m_. ch mS.}].

(31.22)

The preceding formulas allow one to express all the quantities, defining the strained

state of the strip, in terms of the deflection parameters A and the quantities p i
nan

and Pv

The formulas (31.11) allow one to calculate the stresses in the longitudinal

ribs and the elastic energy accumulated in them:

.9, = f 2-_ P:(x)dx. (31.23)

One determines the mutual approaches hi and A2 of the transverse and longitudin-

al edges of the strips from equations similar to (29.12), after which one determines

the work of the stresses Pl and Pz • acting on the longitudinal and transverse edges
of the plate:

W = -- plhl -- p,h,. (31.24)

In view of the fact that the calculations are elementary and the results obtained are

cumbersome, we shall not give them here. The results of actual calculations by
the Bubnov-Galerkin method are given in the article /V'II.7/. Further, applying

the energy method one can derive a system of equations for the determination of

strip deflection under given loads applied to its edges. The parameter P2 is equal
to the magnitude of the transverse loads divided by the strip length, and is there-

fore a known quantity. The values of A and p i can be determined from the
minimality condition of the sum of the e_n_stic energy of the strips, ribs, and the

potential energy of the loads. This latter, up to a constant, is equal to the work

of the external loads, taken with opposite sign, and therefore the parameters Amn

and pj can be determined from the system of non-linear equations:

d(3+3.--w) :0, _(_+3. -w9 10. (31.25)
OA,_. Op,

Here, to a stable equilibrium state correspond those solutions for which the deter-

minants and the principal minors of the matrix of the second derivatives of the

quantity ()+3_t --W) with respect to Amn and Px are positive.

in some problems of practical importance, instead of the value of the trans-

verse load on the plate P2, the magnitude of the mutual approach of the strip edges
A.. is given. Such a case is encountered, for example, when the longitudinal ribs

are very rigid with respect to flexure in the plane of the plates and are clamped to

the transverse ribs, preventing their mutual approach. In that case A.. = 0.

The solution of such a problem reduces again to the solution of the system of

equations (31.25), to which is added one more equation

A2 = O, (31.26)

connecting the quantities p_, P2 , and Arn n .

In article /VIII/ are given the results of the calculation of strip deflections in

the first approximation, obtained on the assumption that in the expansion (29. 15)

M=N=I.
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There, computations have shown that the mean stresses in the strip T I¢(x)

are almost the same along its whole length: the deviation of the quantity T it(x)

from its maximum value in all cases does not exceed 6%. Therefore, in the case

of a strip rigidly clamped to the longitudinal ribs, it makes sense to introduce the

concept of the reduction coefficient

V = T_,(x)/p,0,

where PI0 is the magnitude of that strain which would appear in the plate in the

absence of buckling. Here, other conditions being the same, the reduction coeffi-

cients in plates with longitudinal edges which slip along the ribs and in plates with

edges clamped to the longitudinal ribs, turn out to be almost identical. The solution

of the problem of determining the deflections of a strip clamped to the longitudinal

ribs was published in paper /VH.7/ for the case when the strip is clamped to the

longitudinal and the transverse ribs. In order to satisfy the boundary conditions

in that case one has to add to the solution of the compatibility equation (29.8), taken

in the form (31.18), other terms of the form

2N

_cos ny [d_,,ch n_: q--d2.x sh nx] _, , (31.27)

where

A:O: = O.

In order to determine the constants clm ,..., d2n ,)ne has to make use of the follow-

ing conditions:

I. the linearity condition of the longitudinal edges of the strips, character-

ized by the equations (3I.19), and the analogous linearity condition for the trans-

verse edges, obtained from (31.19) by replacing the quantities (m 5 ), clm , and

C2m by the quantities n, dln , and d_ ;

2. the condition of clamping the plate to the longitudinal ribs of the form

(31.12) and analogous conditions for the transverse ribs. Here it turns out that

with the help of a finite number of parameters Clm ..... dzn it is impossible to

arrive at satisfying these conditions at all points of the strip edge. Therefore,

F.F. Rostovtsev proposed to determine the quantities Clr n ..... d2n from the con-

dition that the expression

7. <-=,.....

be zero, and from analogous equations for the transverse edges of the strip. After

introducing the expression (31.18) in these formulae and integrating, one obtains

linear equations for the quantities C_m ..... d_. I,IIthe preceding conditions

give a system of equations whose solution allows on_ to express the quantities

elm ..... d2n • and consequently also the stress fun:tion • in terms of the para-

meters Amn , Pl ' and P2"

The further solution of the problem can be ca:.ried out by the method indicated

in the preceding paragraph.

In Figure 18 are given curves of the deflectio_s of the longitudinal axis of

symmetry of a square pluralumin plate (of dimensions 40 X 40 X 0.05 cm), freely

supported at the edges and subject to a transverse pressure q. The plate was sup-

ported in such a way that its longitudinal edges could not approach each other: the
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tangential stresses at these edges were zero. The transverse edges of the plate

were rigidly clamped to the transverse duralumin ribs of 2.05 cm2 cross-section.

The solid lines represent the theoretical data, obtained by solving the problem in

the first approximation. The dash-and-dot lines represent the theoretical solutions

of the problem in the second approximation, when the deflection function was sought
in the form

--=_--Atlc°$_c°sy-_-AI2¢°st _-¢OS_-+3xy

-_ A:t COS x 3#T cos -f.

The dashed lines represent experimental data.

0,/

02

#.¢

°$

w

Io 20 30 _0

aP#_.i;_3._x"-_ _ II approx.

exper/m ent _:aO._

= theoretical curves

.... experlm enta[ curves

Figure 18

O I0 20 30 _,

01

O2

oJ

o_

o_

o_

07

)x approx.1 n=S_7 /

'k_:_, / experirnentt n 00,5 _,/

x,_ -- _ _K _-.. ¢xperirn eat _

"" I approx. J

W

P :-357

_, 00._

Figure 19

In Figure 19 are given the deflections of the same plate which, besides the

transverse pressure q, is also under either a longitudinal compression P = --357 kg

or a longitudinal tensile stress with a value of P = 357 kg*. In the paper /VII.T/

the problem of determining the deflections of a strip has also been solved, for the

case where before the start of the loading the strip had an initial bending sufficiently
well described by the function

M, N,

w°=Z_Aom, cos'(m--{)'cos(n--_)_. (31.28)
m-i n-i

* These graphs were taken from the work of G.G. Rostovtsev /VII. 2/.
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It should be noted that the initial bending, expressed by this function, has certain

specific properties:

1. the initial bending is zero at the strip edges;

2. at the strip edges the curvatures of the initial bending are zero.

The equation of compatibility of deformations in zhe presence of an initial bending

has, according to (26.11), the form

32 a_ 0 _

-- L\_-/ --_V" _j'

where w ==w I/t. w o = w°/t.

Here the change of the stress function during the deflectlon of the plate

has been denoted by t _i- If by t ¢o one denotes the value of the stress function

characterizing the initial membrane stresses, then the stress function after the

deflection of the plate will be

_=,I>0 +¢I. (31.30)

Since the plate has zero deflection at the edges, :he equation (31.4), characterizing

the linearity of the strip edges, is also entirely -alid at the edges of the plate. It
is easy to convince oneself that the conditions of clamping the plate to the ribs

(31.11) also remain the same.

As equation (31.29) is linear in _. and the boundary conditions of linearity of

the strip edges and the conditions of clamping of the strips to the ribs are homo-

geneous, the solution of the equation may be written in the form

where ¢/ and ¢_ are solutions of the equations

_¢( = ( _'mV_ ___.___,___

satisfying the above-mentioned homogeneous conditions.

The solutions of these equations are simtl$ r to the solution of the correspond-

ing equation for an absolutely flat strip; they ar,: obtained from it by the simple

replacement of the quantity Amn by the quantitie _ (Amn + Aom n ) and Aom n.

The further course of solving the problem is the same as that of solving the

problem of the flat plate. We shall not dwell he_ e on the determination of the de-

flection of a plate, whose middle part is support,:d by flexible ribs, or on considera-
tion of the case when the plate edges are not loa_ ed. These questions are elucidated

in the works /VII.7/ and /VIL8/.
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Chapter VIH

SOME METHODS FOR THE SOLUTION OF PROBLEMS IN THE

THEORY OF BENDING OF CIRCULAR PLATES

§ 32. Fundamental Relations of the Theory of Symmetrical Deformation

of Slightly Bent Circular Plates. Application of the Method of Power Series

We shall specify the position of a point on the middle surface of a circular

plate _ by polar coordinates r and _0 where the origin is the center of the plate.

Let the plate in the general case have an initial bending w °, symmetrical about the

center, of the order of the plate thickness t. The length of a line element of a

before the deformation is given by

ds _ _ dr j -F r_dOL

Comparing that expression with (25.4) we see that in the given case one should set

the following in the formula of § 25:

a=r, 1_=8, Bfr. (32. 1)

where the reference surface is a plane, i.e., k 1 = k 2 = 0. We shall assume that

the stress applied to the plate and the boundary conditions are symmetrical with
respect to the center of the plate. Then all the quantities defining the deformed

and the stressed state of the plate will depend only on the coordinate r.

Our statement will hold ff the stress in the plate is not very great; in the
opposite case, under certain conditions an unsymmetrical buck.ling of the plate edge

can appear /VIII. 9/.

According to (25.32) we have expressions for the radial stress T 1 and the
annular stress T 2 in terms of the stress function _,:

rT_ = d2 Ta = a,+ (32.2)
dr ' _dr_ "

Here; by virtue of symmetry, the shearing stress T Iz is zero.
the changes in curvature are

According to (25.9)

d_ I din'
x_ .... , x= x,,=O. (32.3)

dr = /" dr '

The initial curvatures of the plate can be calculated from the preceding formulas

by replacing w by w ° in them:

a,=_, ,,_0=_ I a_ =o =0.xm°=- ar_T-" " r " a-"-Z' (32.4)

According to (32. 1) and (25. 13), the Laplacian operator has the form

I _;r a--(..,]. (32.5)
a(.,)= • . arL tlr J
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The equation of equilibrium (25.12) can, by usinl_ (32.2)-(32.5), be written in the
form

£t _ ! d r d

7 d=("']- (32.o)

where _" = --p > 0, ff the transverse stress is oriented hn the positive direction of

the bending.

The compatibility condition (25.33) reduces to the equation

7"_; _T (_) _-_;}TLk_-_) "I-2T__-,I =°" (32.7)

According to (25,10) the radial bending moment and the circumferential elongation

are defined by the formulas

On the other hand, according to (25.8), _a = u/r where u is the radial component

of displacement. Consequently,

_\ dr_ r " (32.9)

When the plate edge r = a is rigidly clamped, then the boundary conditions

w=0, u_O= =_ v d_ for r_a
_rt r _r (32.10)

should hold. When the plate edge can displace itself freely in the radial direction

and an outside radial stress Pl is applied to it, t_e boundary condition for the func-

tion _ has the form

Tj_pl or l d_ -_pl for r a
r _ (32.11)

Introducing the dimensionless quantities

_, =_,t, _.°_'r_°/t, _ _ ,

% = _/Et _,

(32.12)

(32. 13)

and also the notations

p_.=== rt__ I° a_, = #,_'t _tr _r ' q=--7'_"'P=--

we write the equations (32. 6), (32.7) as follows:

12_(l -,=)' (32.14)
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_, d r _ r, d (pq)])_

-- 7-. -_-[p p,,,(q+ qo)l+ -_-- = O,

± =, ,rt = ]}

l I d _ =
Jr" _'- _'' "_p [P (q + 2qqe)l = O.

(32.15)

(32.16)

By studying these relations, the reader can convince himself of the fact that

the similarity theorems, formulated in S 29 for a rectangular plate, hold also in the

case of circular plates having the same initial relative deflections w. 0 and the same

Poisson's ratio v, By taking this into account, one could, in what follows, limit

oneself to the investigation of plates of unit radius, unit thickness, and unit modu-

lus of elasticity of the material.

Multiplying (32.15) by 0 and integrating, and then dividing by O, we shadl

obtain

= d"+[+ -`''.+++'*'+
++

I p+

(32.17)

In order that the second derivatives of q with respect to 0, characterizing the shear-

ing stresses, be bounded for 0 = 0, the constant of integration c_ has to be set equal

to zero. Making use of the identity

aI_ d _ d2q t a- ._,,_p,,,j=±.3'_"+p ...... (,0, '_,+'dp p dp de_ _ d e _p )'

we bring the equation (32. 17) to the form

,..2____,:,.dp (P_ _pq)-- pl,(q+qO)+ P_t'o=_-t edp = O. (32.18)

By carrying out analogous transformations, from equation (32.16) we shall obtain

= dp,,_ l
l__.p= _ae (P aO ) + -2 (q' + 2qqt') = O. (32.19)

We shall consider a plate which is under the action of a compressive edge stress

(T 1< 0) in the plane of the plate contour.

On the plate contour the condition (32.11) should be satisfied. Besides, the

bending and the bending moment should be zero. Taking into account (32.8) and

the notations (32. 12) and (32. 14), the last of the boundary conditions may be written

in the form

I +v)q=0 f,= p=l. (32.20)

As Pl* and q, by virtue of symmetry, have to be even functions of Cartesian coor-

dinates x, y, then

187



Consequently,

ap,,, Op,._, dx ._Op_. Od__r__O tee r--O.

dpl. dq -- 0• ": _-- -- for r O.
ar _r (32.21)

Friedrichs and Stoker proposed /Vlll.6/ the following method of solving the problem

under consideration in the case when w 0 = 0 and _ = 0.

Let

p=_/A (o<_ < A),

px. -_ A_2_, q _ A:qk, (32.22)

where A is still an arbitrary number.

Then the equations (32.18) and (32.19) and the conditions (32.20}, (32.21), im-

posed upon the function q, take the forms

A _-_(l-t-v)k:0 fc, a=A. (32.24)

d_ dl
.... 0 for _0. (32.25)

We shall seek the solution of the problem in the form of power series, satisfying

the conditions (32.25), setting

_ = _ ._,a,_,k _ _ _ ,_'_.

,_ _ (32.26)

Here the equations (32.23) are satisfied, if the c )efficlents of the power series are

connected by the relations

2s(2s-l-2)k,_ _ x_le,, (32.27)
m+n-_- i

'2
(32.28)

m+.-$ -i

We take any values of the quantities _0 and k0 and determine the following coeffi-

cients of the series according to (32.27), (32.28,. Introducing (32.26) in (32.24),

we obtaIn the equation

(2s -_- 1 -_- _) k,A '_ = O. (32.29)

Solving this equation by one of the approximate raethods, we determine the para-

meter A, which had remained free so far. Thereupon we determine the radial

stress at the plate edge accordIng to (32.26) and (32.22). Thus, taking various

values of k 0, one can find solutions eorrespondil,g to different values of the para-

meter of edge stress.

In article ]VIII.7/ it has been shown that if it is desired to obtain a solution
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of the problem, which, under decrease in stress, transforms continuously into the

solution corresponding to the smallest of the critical stresses, then for A one has

to choose the smallest positive root of the equation (32.29).

The method described above can be applied almost without change to the cal-

culation for a plate elastically fixed at the edges. Bodner /VIII. 7/ has carried out

the corresponding calculations for a plate clamped at the edges. The results of the

calculations have shown that under large compressive stresses along the edges, a
region of positive membrane stresses appears inside the plate where the plate is
under tension.

1,0

°411

_. 0

-05 _

.tol '\

I 3 3

pinched

plate

__ f_eely supported

plate

;' 9 // /3 ,% t$

Figure 20

Figure 20 shows the dependence of the ratio of the radial stress at the center

to the edge stress, and of the ratio of the compressive stress at the edge to the

first critical value of that stress.
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§ 33. The Method of Successive Approximations and

the Method of Small Parameters

In many cases in the solution of problems of deflection of a circular plate it

is convenient to use the substitutions

= 7 tV = .,,
P =pa d (I - _2)IEt_. ¢ = 1 - r_la z

(33. I)

After a single integration of the equations (32.6) and (32.7), carrying out the substi-

tutions (33.1), and assuming that p = const., we obtain the equations of equilibrium

for the plate in the following form

a 2 _v _) 3_-;I(1 r.) _1 = 3 (1 -- va)S(_- _L 4-P' (33. 2)

-_,l(I -- _) S} = t (v; (33.3)

where we introduced the differential operator notation

LevI=- 2 I_\_J ' _ ' --
(33.4)

Now, when the plate is clamped at the contour, the deflection should satisfy the

conditions

_0, d_t_O at E_O. (33.5)

In the case when the plate edges are clamped so t _at they cannot displace themselves
in the plane of the contour, the boundary condition,s (32. 10) hold for the function S

which, with the notations (33. 1), are brought into the form

2dS/d_--(l--v)S_O at _0. (33.6)

When the plate edges, while fulfilling the conditions (33.5), can slide freely, the

static boundary condition

$=So at ¢_0, (33.7)

should hold, where So is the given value on the ccntour of the quantity S. Besides,

one has to set up the boundedness condition of the quantities dvld_ and S at the cen-

ter of the plate, i.e., for _ = 1. Integrating equation (33.3) twice with respect to

_0 we obtain an expression for S

= (o dzd + +.:,
0 0

where c z and c2 are constants, determined from he boundary Condition (33.6) or

($3.7) and from the boundedness condition for S a _ _ = 1, where, according to the

Dirichlet formula
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For the case when the plate edges can slide, we find from (33.7) that

From the boundedness condition for S at _ = 1 it follows that

l

o = _(1 _) t (.) a_ + c, + c..,.
o

Determining c z and c 2 from the two preceding equations and introducing them in the
expression for S, we obtain, with the help of the Dirichlet formula

, 1

'!i :f" ÷' <=='=>s = T__ (¢- =)L(v)a=-

Whence, substituting for S in the equation (33.2). we obtain an integro-differential

equation which has to be satisfied by the function v. In the absence of initial deflec-

tions it has the form

I

d'_ 1 dv I .

d7.71(I e" L_(] -3(I " )d-_. {:2E'! (I -')("_'\a:i_-,d" -

(33.9)

dr - z 3 O.

We shall investigate the solution of this equation by the method of successive approx-
imations. As the first approximation v 1 we shall take the solution of the equation

d _ dr., I , (33

satisfying the boundary conditions

av, ao, Iv, (0) = (_)__o _ 0, _o,
(33. II)

We easily find that

v,= _P.¢'. (33. 12)

If one substitutes this expression for v in (33.9), then the difference between the

right- and left-hand members of that equation will be the quantity A I of the neglec-
ted compononent. Figuratively speaking, one can say that the error of the first

approximation is brought about by the unbalanced state of At:

ai_3(l--, =) C (i--_)

- _(: - ,) ("<',D' d,] _ + $,,I
\a_lt_ J2(l-_) l"

o

(33. 13)

To determine the correction 62to the first approximation we shall find the supple-

mentary deflection required by the unbalanced state of A I. Here, in order to avoid

the necessity of solving a non-linear equation, we shall neglect the influence of

membrane stresses and determine _2from an equation analogous to (33. 10)
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.3
with the boundary conditions

Introducing (33. 12) in {33. 13) we obtain the second approximation from equation

(33. 14) by a subsequent integration

sTd6 • "' "

(33. 15)

To obtain the correction to the second approximation one has to calculate the

change A2of the right-hand member of the equation (33.9) which will occur if, in-

stead of v = v I one substitutes v = v 2 and then solves the simple linear equation

,33.10,

Here the third approximation will be given by the formula v 3 : v 2 + _3, etc.

The successive approximations obtained in his way will converge, provided

the magnitude of the stress upon the plate is not l_rge. In that case, the membrane

stresses are also not large, and the first correction is smaller than the maximum

of the first approximation, the second correction _s smaller than the maximum of

the second approximation, etc. The proof of this can be found in the work /VIII. 1/.

We shall now consider the application of the method of small parameters--ex-

pansion of the deflection into a power series of a parameter of pressure.

z, =_] T_ (¢) P'. (33. 17)

As the first approximation to the required solutlor, i. e., as the coefficient y,, one

takes the solution of our problem according to the theory of small deflections of

plates. The followlng coefficients of the series are determined subsequently.

We shall assume that in this way we have ob alned an approximate expression

(33. 18)

To determine the (n + l)th member of the series (_3, 17) we shall introduce (33. 18)

in the left-hand side of (33.9) and, after raising to the power and multiplying, we

shall separate on the right-hand side all members containing P to a power higher

than (n + 1). Solving the equation obtained for v, _e shall find a more exact approx-

imation for v and at the same time, the value of the function y,+,{:).

Hence St is apparent that the method of the sl.lallparameter can be considered

as a variation of the method of successive approxim_ttions, in the appllcation of which
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the higher powers of the quantity P, considered as a small parameter, are neglected.

Without dwelling on the details of the given variant-method of a small parameter,

we shall only show that with S o q_ 0, in the first approximation the problem leads to

the integration of a Bessel equation, and in subsequent approximations to the inte-

gration of expressions containing Bessel functions.

In what follows we set S o = 0 and go on to the exposition of a second variant of

the method of a small parameter, proposed by Wei-Tsang Chien in /VIII. 14/.

Let vc = v(1) be the deflection of the center of the plate. We shall expand the

deflection function and the pressure parameter P in series of powers of v c, consid-

ered as a small parameter

_(_)=vj_,)v,-{-v,(_.)v?4-- .... P_PJ_c'-l-Pzv,J'-[ - .... (33. lg)

Introducing these expressions in equation (33.9) and equating the expressions on the

right- and the left-hand sides containing the parameter vc to the same power, we

shall obtain the sequence of equations

a._(I c.o,i= s
_L d_J - 4-P_ ' (33. 20}

!

o (33.21)

The value of the function v at the center of the plate should be vc:

v(I)=vi(l)v,_-v_(1)vc_-t - .... "v,..

Hence it follows that

vx(|)=l, v:(l)_O, v._(1)=O .....

The boundary conditions for the plate edge have the form

a-Y-v=0, _'_-- a-Z'--.... =0 _o, _=0.
d: d_ d:

(33. 22)

(33.23)

By solving equation (33. 207 for the conditions v, (0)= (dv,/dL)_ _ O, Iv, (I)[ q-_, we
obtain

Hence, in view of (33.22), we obtain

P,= 18/3,v,(_)=_'.

Introducing this expression of v I we obtain the solution of equation (33. 21) satisfy-

ing the conditions _,(0)= (dv21dQ, = O,I_,(1)[< oo:
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II --_). Consequently,From (33.22) we obtain P:-- i _(l

In /VIII. 3/ are given the calculated results for de'lections and stresses in circular

plates for various boundary conditions at the plate edges; in particular, one con-

siders the question of the deflection of a plate with an elastically supported edge for
various rigidities of fixing the edge, where the dependence of the deflection of the

center of the plate on its stress is given by the formula*

P : _,_'_÷ _.._J at-,.. (33.24)

The values of the coefficients, _x and 62 for vario,ls conditions of clamping the plate
edges for v = 0.3 are given irt Table I.

Table I

Boundary conditions p

_=0 M_=O [_-----0 l.&J81

'v=O M_=O u=O

t'--_O dvldr=O u=O

1 3;81

5.3333 2.910

v:O _ldr =O i T, :O 5._ ! ,) 9843

_2

O. 3756

2.480

Introducing (33. 19) in (33.8), we find an exp:_'esslon for S. For the third case

of the boundary conditions, when at the plate edge 2 = 0, dr/dr = 0, it has the form
at the

S_ _-d(2-_-_-_. _,. _,_. __'d-'_ r 16o- _,_
5 k*-,-- -- -- j-- 7_,_ -L (I-,_, ÷

(33.25)

÷ J_O--5___.__ (__.__t,x÷_,b) _01--24_ _,_ 123ts_ 39(, __ 9_.#jI--v l--v '

Analogous formulas for elastically supported plate_ are given in /VIII. 3/. Calcula-

tions show that when the plate edges can move freely in the plane of the plate, regions

of compressive (negative) annular stresses appear near them, which can produce

a local loss of stability near its edge in an unsymrnetrical form (the appearance of

waves). This phenomenon has been studied by D. Yu. Panov and V. I. Feodos'ev

/VIII. 9/. The results of their investigations show that the approximate solutions

of the problem of deflections of a circular plate, ir which the plate surface is

assumed to be axially symmetric, should be applied with care if one is considering

a case when the plate edges can move freely in its flane.

* This formula for the case of a clamped plate wa_ obtained earlier in /VIII. 1/

by a transformation of the series (33. 17) with _,= 0.
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§34. AsymptoticSolutionof the Problem of the Behavior of

a Circular Plate under Large Edge Loadings

Let us return to the problem, considered in § 32, of determining the deflec-

tion of a freely-supported circular plate under the action of edge loading in the plane

of the plate ]VIII. 6/. The calculations of S 32 have shown that the method of power

series can be applied successfully only in the case of not very large stresses on

the plate, when the ratio of the value of the stress to its critical value for start of

buckling does not exceed 10-15. If the above-mentioned ratio is equal to 15, then to

obtain sufficient accuracy one has to evaluate nearly 30 terms of the series.

In order to obtain information on the behavior of the plate under very large

compressive stresses, we shall apply the method of asymptotic solutions of differ-

entlal equations.

The power series calculations have shown that with increasing edge compres-

sion on the plate, a region of almost uniform tension is produced within it where

T_ > 0. Under increasing edge compression this region becomes more extensive,

and the edge zone, where the platp is compressed, becomes increasingly narrow.
For further consideration it is convenient to introduce new substitutions

_-- V"-__,, (1 - p)/_, p1,,=_,.,p,, q_-- !_,.Q, (34.1)

where p,. is the value on the contour of the quantity pj_, defined--just as the quantity

_--by (32.14); P:k is the criticalvalue of_l,. Here, ifq 0= 0, p= 0, equation
(32.18) takes the form

_Q b 3 .dO _la,Q_O"
_2 I dp (34.2)

In an analogous manner we transform equation (32. 19) into the form

d2P_ .3 . alP, I .
_;"_ __±_ _=7 Q' (34.3)

q

As according to (34.1) _0 for p_l, and _l/_._for p= 0, the boundary

conditions (32. 11), (32.20), and (32.31) reduce to the equations

Pl(O)=1, ,,,'o(_"_ _Q(o)=o, (._4.4)

dPt l'^ 1 "l ./"---_ \

In order to obtain simpler approximate equations, characterizing the state of the
plate under large values of edge stress Pl,, we shall carry out the limit in the

equations (34.2)-(34. 5) by setting --_1. = _. We shall call the equation obtained

the first approximation equations of the edge effect. Denoting the respective approx-

imate values of the functions P1 and Q by P1 ° and Q0 for determining them we

have the equations
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d_P_o 0°_ "_¢0 + P_°6'° _ O, (34.6)0= :':.... . de--T_- T' _--r
OF -r il ;,i .... p,o (o)-- I, (ctQ°/d[O,,= O, (34o7)

I|m ap-_-__ lira a.__ = O.
_ a_ _ a_ (34.8)

To solve these equations we shall introduce a nero independent variable x and un-

known functions y and z by means of the substitut;ons

x =re -_ , dp = - dx/¢_, (34.9)

p o = _ ,,,ty, Qo = if_._z, (34.10)

where _ and o_ are numbers whose values so far remain undetermined.

When _ = _ we have x = 0, when _ = 0, x = _. Consequently, the relations

(34.6)-(34.8) are replaced by the equations

.__(._ _+_, =o,., ±(._ _---'_--y,_=o,
ax \ dx/ dx \ d_ }

, (d% .=o
Y (_) : -- ,,-_" \ax/_._ '

.,_ ' x-_.o\ dX /

(34.11)

(34.12)

(34.13)

We shall assume that the solution satisfying the boundary conditions can be expressed

by converging power series

y = _ (-- l)"y,x *s , z = _, (-- ])'z,x"*'. (34.14)

Substituting these series in (34.11) and equating to zero the sums of the coefficients

of the same powers of x, we obtain the recurrence relations

(2s)Zy,= _.. z.mz,,,, (34.15)
at4..-t't.,,,,_- I

(2s + 1F _, = F, z_y_
_÷a-s (34.16)

In particular, for s = 0 we obtain from the last eqtation:

z, = z.yo. y,= 1. (34.17)

According to these one can calculate the desired number of coefficients of the

series (34. 14) if one takes any arbitrary value for z 0.

If the series converge, then one can differen late them term by term, and the

conditions (34.13) will be automatically satisfied.

The second of the conditions (34.12) will be sztisfied if for '_ one takes a root

of the left-hand member of that equation. Friedrichs and Stoker /VIII. 6] chose the
smallest of the roots, which turned out to be _ = 0.}8618. Then the number m was

determined from the first condition (34. 12).

When one knows m and _, one can calculate _11 the quantities which characterize
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the stressed state of the plate. Computations have shown that with the increase of

the edge compression of the plate, the ratio of the value of the radial membrane

stresses in the interior parts of the plate to the radial stresses on the contour ha-;e

as limit the negative number --0.473. Thus for large values of compression the

inner pact of the plate turns out to be expanded. Further calculations have shown

that with a strong edge compression the largest bending stresses of the plate are

approximately equal to the quantity

I.11 (VT(T'_-_-,=).£(T,dEt) '_ (2toO.

This formula has an asymptotic character, i.e., its relative error is the smaller

the larger the edge compression of the plate. Of course it holds when the maximal

compressive stresses do not exceed the elastic limit. One has also to take into

account that for very large values of compression of the plate, the rise angles of

the plate elements are no longer small, and the theory of "shallow" shells--on

the basis of which our initial differential equations were derived--becomes inapplic-
able.

In that case, one has to make use of the corrected equations of the edge effect,
which can be found, for example, in the work of Reissner /VIII. 8/. It is also not

difficult to derive them from the equations (7.4) and (7.5) of this monograph.

We shall further consider the asymptotic expansion of the solution sought in

powers of the small parameter _=_/ _l/--_pl. proposed by Friedrichs and Stoker

IV'IlL6], Here, for brevity, we shall limit ourselves to two terms of that expan-

sion. We shall assume that the functions P1 and Q introduced above for zero values
of I have derivatives

0

Then

p,@)=p,o(p)+_p,,(p), Qlp)_Cp)+ XQ,(_). (34.18)

]
Substituting the quantity 1/I for --V --P_. in equations (34.3) and (34.2) and differ-

entiating them with respect to t,'_and then setting t= 0, we shall obtain the equa-

tions

a=P," _Q' = 3 --
dp= dt '

_'dp= t- Pz°Q' _ Q°P" =3-_"

Also from the boundary conditions (34°4) we find the relations

P,' (0)= O, (a_)o-- (I +.) Q° (0) _ O.

(34.19)

(34.20)

(34,21)

Differentiating the equations (34,5) with respect to l gives the relations
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Numericalcomputationshaveshownthatthesecondtermsof the left-hand members

of these equations have the limits zero for _ _ 0. Besides, according to (34. 18),

dpx -- ap,0 apt" -4- 0 " dP,_ _ dP,'
d-)--_-+ _" ,_ ..... _ ,,_) _'-

Therefore, we shall define the functions P'_ and Q' so as to satisfy the conditions

aP,' n0' (34.22)
"-T" .... o. -( _,_ = o.

We shall seek the solution of the system of non-homogeneous linear equations (34,19)

and (34.20) for P1 and Q' in the usual way, setting

P_'= _+ _,, Q' = k+_,, (34.23)

where = and k are the particular solutions of the equations (34.19) and (34.20), while

the functions r._ and k 1 satisfy the respective hom)geneous equations

L_' -- Q#q = O. _b, '-:- p ok_-. QonL = O. (34.24)
dp ,lp" '

it is obvious that if P10(_) and Q0(_}) are solutions of the system of equations (34.6),

then the functions p_0tp__a) and Q00+_) , where a is some parameter, represent a

one-parameter family of solutions of these equations. We shall show that the
functions

,',1 _ _, P,0(_ + _), k_ = _. , .)°({__F.a) (34.25)

satisfy the equations (34.24). In fact, introducing {34. 25) in the first of these equa-

tions and using (34.6), we have

d a'_'p,._ I Qot} = O.

In the same way, we convince ourselves that the s(cond of the equations (34.24) is

also satisfied. As the second one-parameter fami y of solutions of the equations

(34.24), one can take the system of functions ¢2P,°(¢})and _2Q_(_)which we substitute

for P10 and Q0 satisfying the equations (34.6). it is not difficult to show that the
derivatives of these functions with respect to a, at a = 1, represent one more solu-

tion of the equations (34.24):

,,,- _+ 2P,o,_,,= f,_-2¢_. (34.26)

In order to find the particular integral of the non-h, Jmogeneous equations, we shall
introduce the substitutions

x =ie -'p, P,'=-3*y', Q' = -_ V-2 ®z".

Then the equations (34,19) and (34.20) transform in19 the equations

x ax \ dx / dx. '

X--_ X"

(34.27)

(34.28)
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The functions y and z were already defined above. They are here considered as
known°

Substituting in (34.28) the power series

.¢=_(-l_,y,',,., e=_¢-_),_.'_,,.+,, (34.29)

and also (34.15) and (34.16), and equating the coefficients of the same powers of x,

it is easy to obtain the system of equations which has to be satisfied by the coeffi-
cients of the series. If one somehow chooses values for the first coefficientsj then

the remaining coefficients can be determined successively. In this way the particu-

lar integral of the equations (34. 19) and (34.20} satisfying the conditions (34.22)
has been found.

In order to obtain a solution which satisfies the boundary conditions (34.21),

it is necessary to add to the particular integral the corresponding linear combina-

tion of the solutions (34.25) and (34.26) of the homogeneous equations.

Calculations by this method have shown that at the plate edge with r = a, the

following asymptotic expansions are valid:

(34.30)

The ratio of the radial stress at the center of the plate to the radial stress at the

plate edge may be represented by the asymptotic formula

1",(r=.o) _ _ 0.47 - I__J_L_L_L_L_L_L_L__
/-, {r--- _ _ (34.31)

199



Chapter IX

STABILITY OF THE MEMBRANE STATE OF EQUILIBRIUM

OF CYLINDRICAL SHELLS OF r,IEDIUM LENGTH

§ 35. Some Relations of the Theory of Shallow Cylindrical Shells

We shall refer the middle surface a of a shell to cylindrical coordinates a = x

and _ = s, where x is the distance measured along the generator, s is the arc dis-

tance measured along the curve of the cross-section. Then, in the formulas of

§ 25 one has to setB = 1, kl= 0, k2= 1JR = k (R is the radius of curvature of the
shell before deformation).

In particular, according to (25. 8) and (25. ,_), we find the relative elongations

of the middle surface and its change of curvature as it is transformed from o ° to
ot:

= ou' -$-! "_' \2.t-_1 0,O'_ a,,-2L_;) _ _

,, __L_,,,,,+ ±(_----Y4-_-'°"
z= o_,--"- 2\o5/-- as -_-s'

(35. 1)

2,12= _" -I- _' -I-_' (_--_- _'_ _'_ _'

", =- a-;i-' "12- a._, .--

The internal stresses and moments are defined as before by the formulas (25. 10).

The equations of equilibrium (25. 11) and (25. 12) take the simple form

or f, ar_jz ' r'_T_._a:_=o (35.2)
_;+_ =0. a= --a, '

where

x\ ax_ + a._ ] '_ \ a.oa _xas] --

-T'/a"_+ °'_w' -- k' +p=O,
z \ as: a_

, a_(...) _a=(.)
_ 4= --_2cr %_

(35. 3)

p>O is the density of the external normal pressuze.

Introducing (25. 10) and (35. 1), we express the equations (35.2) in terms of

the displacement components:

a'.'__(t+,) a_v,.}_i--, a,., __,)e___ +if=0 ' (35.4)

_'_;; + _+'i- _o_"'+ _-'_. _,'_,. t__;(_,)+/. = o, (35.5)
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where
OF POOR QUhLh'Y

(35.6)

After combining the equations of equilibrium

2 a_, o, _+' °-' (35.5)--0,i-, o_,(354)+_(354) I-, _xos

we eliminate v I and obtain the following equation, expressing the relation between
u I and w ] :

d_ 3 Os _ _ Ox ] 1 "_ a_

0'/; J+_ aV_-
Ox = 1--_ Oxds

(35.7)

Analogous to this, we find the equation expressing the relation between v ! and w ] :

/i_,v'=---_-_ (k_l_t) --(2-[-v)_s (k 0Zw'_--Os= Ox' / (35. 8)

2 or; ,_#+_+,._v,__
1 -- "_ Ox= Os_ l -- _ OxOs

Thus, for the determination of the equilibrium state o I we have a system of

three equations (35.7), (35.8), and (35.3), which are linear in u [ and v I and non-
linear in w .

In the state of neutral equilibrium, together with the equations (35. 3), (35. 7),

and (35.8), the equations (25.26) and (25.27} also have to be satisfied:

0T, OT,,_{_O;r_-_-;+_--0, _ -_/=0, (35.9)

-- T / a_v_ -- o_ k. _ T, o=_

(35. 10)
--2T_, a.______ TI _=0,OxOs 2 Os=

where Ti, T z2 are additional elongations which appear in the transformation of the
surface gl into the surface o*, according to (25.24):

,,=-_ -_;\%V+ ,_,1' *,=W+'_w+
Ow o Ow l

_{_ OWOs(_'Z+_-_ ) ' (35. 11)

u, v, w are the projections of an infinitesimal additional displacement.
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Theequations(35.9) can be replaced by the equations

-- -_: i - , "-a.%-_'

055 Os \ _ C-] 1 --

')_fz ÷ I+,, 0:,
O: i-- O:as '

(35. 12)

_fs
o.¢z

where

+-'5-" _L-__ \_-_ +-'_-_ / +-L-_ k'_"_-r'-g£/J
(35.13)

(35. 12) and (35. 10) represent a system of three Linear homogeneous equations in

u, vj w.

These equations are the equations of equil brium in the components of dis-

placement. It is frequently more convenient to :hake use of the equations of a mixed

method, which define the deflection and the stress function. Setting

a:+1 TI _ O_+x,,,, a_,._ TI_=__ s 2 Ox'TI as_ ' ' '
(35. 14)

we satisfy the equations (35.2) identically, where the condition of the compatibility
of deformations has to be satisfied:

_xO$ Ox,)s

o,_, (____+o-_% _ k) o:,,., o,_=o.Ox'- \ Os_ Oa* ts _ Ox_ }

(35. 15)

This equation together with the equation obtained from (35.3), by the substitution

(35. 14), represents a system of two non-linear equations in _2! and w!. In the

same way, setting

a_¢ a_,l, _ (35.16)

we satisfy the equations (35. 9), where the additional stress function and the addition-

al deflection w are mutually related by the equil brium equation (35. 10) and by the

condition of compatibility of deformations (20. 2,:):

axos\ oxos axos] a-_E \_( -- _" (35. 17)

o_ ( a_ + o,., 11-o
o_, _-YP- _/j- "

If the initial deflections are negligible, then before the loss of stability a membrane

state or a near-membrane state is possible. For these one can neglect the changes

a_u._ a_ a_ in comparison wi'h k, and further the rotations a_
in curvature -a_ ' a: ' oxo$ ax

and _-- can be considered as quantities of the s_me order as the elongations.
ds
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Then the equations of equilibrium of the shell, (35.3), (35.4) and (35. 5), become

linear, and the equations of neutral equilibrium can be considerably simplified; in

the _omponents of displacement they take the form

Os_ \

(35.18)
v) ( k

Os _. Ox_/
(35. 19)

DAA_.q- T2k-- T! O_W-- 2T!. O:w = a_• ax_ ._--T 2_s _ =0,

where

--a-_x)' K= Et/(1 -- _).T2 = K(__Z +/_ + v O=

We multiply the equation (35. 19) by R = 1]k and operate upon it by AA(... ). Using

(35.18) and the relations

dv 0 (35lob,

we obtain an equation for w

h&{R(DAttw-- T_ O_-W--_T_ o_,-I Ox_ - 12 Oxbs

l c)_

(35.20)

Introducing the stress functions W the equations (35. 18) become

_--Etk _,=O, (35.21)

and in (35.19) one has to set Tz_ #-_L.

Tt is interesting to note that if the initial deflection w ° is a function of the

argun _t hx+_s, where _ andp are real numbers, then for displacement compon-

ents wh ch are functions of the same argument, the non-linear terms in the equa-

tions (35.7), (35.8), and (35. 15), and also in (35.3) cancel each other upon the

substitution of (35. 14).

OF POOR Q3,_,..;iY
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§36. TheStabilityofaCylindricalShellofCircularCross-Section
underAxialCompressionandNormalPressure

Weshallassumethatacylindricalshellofcircularcross-sectionis subject
tothesimultaneousactionofanaxialcompressionPl,uniformlydistributedalong
theendsections,andofauniformexternalnormalpressurep. Weshallneglect
theeffectoftheclampingconditionsonthefirst _ormofequilibrium.Then,before
thelossofstabilitythestresseswillbe:

r:=p,<O, r,.=-_p, T_---,O (_=con_t).

We shall try to determine the additional displacement components in the form

tt=Usin rnxRsinn_SR ' _'=Vc°' cos_-,
(36. 1)

hsz_= I,_'cos m---_xsin --,
R R

i.R (i = 1, 2, ....)
L

where n is the number of waves formed on the ci:'cumference with the buckling of
the shell.

Then, as seen from (35.21), the stress fun:tion is of the form

rnx tlj

'_= W cos _-sin -_,

where

_=--EtmZRW/(mZWn_) 2. (36.2)

Introducing (36. 1) in equation (35.20) we obtain tl.e approximate relationship between
the load, the shell parameters, and the numbers of _aves m and n, which is obtained

from the corresponding equation of ]IX. 4], even if one of the quantities m2 or n2

is large in comparison with unity.

-- Pzm=Jr- RPn == O (m _Jr" n")=k I +. :.tra4/( mI Jr- n=)=. (36. 3)

In order that all the conditions of the problem be strictly satisfied, it is necessary

to solve that equation for m. Then we substitute the values found for m l, m2 ....

in the boundary conditions and look for the small_ st values of Ipll and p for which

these conditions are satisfied. Here we note that as the equation (36.3) contains

only even powers of m and the boundary conditions are assumed to be the same on

both ends of the shell, it is only necessary to verify that they are fulfilled at one

end of the shell. Denoting the roots of the equati )n by ± mj(j = 1, 2, 3, 4), we
obtain for w the expression

_ Sift COS - _-- • (36.4)
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Andaccordingto (35. 18)

4

ns y W (m n=--,%=) . mix
u_Rsln R $....j (ra_+n_p sin-R--,

j--l

4

_ _ _ COSRcos n, W/[#+(2+_)nmr'q

R _ (raft+ n_= R

We shall assume that the edge contours x = _: L/2 are absolutely rigid with respect

to elongation and deflection in their plane. This means that for x = _ L]2 the

following conditions should hold:

_=0 or _,,Wjcospj=0 (_]_rnlL/2R) (36. 5)

]--I

_=0 or, by (36.5)

_W_ (2 + v) nmfl cos _]/(rnj= + n=f = 0. (3 6.65
i--1

Various cases are possible for displacements perpendicular to the plane of the edge

stiffening rib.

A. It can turn out that the stiffening ribs have almost no resistance to torsion

and are very easily deformed. In that case the displacements u and the rotations _-
8x

occur freely and in addition to the geometrical conditions (36.5) and (36.6) it

is necessary to satisfy the static conditions for x = if: L/2

,(.ml --
kT;_==-- 3-#_/=u' r, zK(_,+,,,)=o, _1",,_=0.

Using (36. 1) and (36.5), one can write the first of these conditions in the form

I,_'IF]cos V')= 0. (36. 7A)
]-z

By (36. 15, (36.65, and (36. 7A) the second condition may be brought into the form

Y w:,m_ cos_j/(_.}+ n')' = o. (36.8A)
j=!

The third conditions is satisfied owing to the periodicity of the additional displace-
ments relative to s.

One can satisfy all these boundary conditions by setting

nzz = .. = m_ = i,RIL (i--odd integer)

B. If the edge contours are supported by stiffening ribs which prevent not

only displacements in their plane, but also displacements perpendicular to these

planes (with the exclusion of rigid body displacements), then for x = ± L/2, apart

from (36.5) and (36. 6) the following conditions should also be satisfied
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or, by(36. 7B)

*}_ _0 or _WjmjsJn .1_-0,
Sx

J--1

Ou

4

J'_t

f T, ds_-.o, f rlz_$=O.

c c

(36.7B)

(36.8B)

The last two conditions are satisfied identically cwing to the periodicity of the solu-
tion under investigation in s.

I. We shall investigate the case p = 0* in greater detail.

In this case, according to (36.3)

--p_=kV-EtD((q-l/_), _=t(m'q-n2):[2m,R_]. (36.9)

The minimum ofpl is at _ = I:

-- pl _ EtJIR V3(l - ,2) _ 0.6Et_/R (v = 0.3). (36.10)

This absolute minimum of the stress is reached f_r values of m and n of the order

of VR/t. Therefore every term of (36.6) which contains a factor of the order of

1In in comparison with the corresponding term o (36.5) can be considered as negli-

gibly small if we admit an inaccuracy of the orde - of _ in comparison with

unity. Consequently, with that degree of accuracy the boundary condition (36.6)

is approximately satisfied also in the variant B. Analogous to this, equation

(36.8B), all terms of which contain factors of the order of 1In 2 in comparison with

the corresponding terms of equation (36.7B), can be considered as approximately
satisfied if one neglects t]R in comparison with unity. Hence, to satisfy the re-

maining conditions (36.5) and (36.7B) for case B, one can take the corrugated
face after the loss of stability to be of the form

Then m 1 and m 2 are found from the equations

W, cos _, -_- W2 cos _, i 0, W,m, s in F-,"_- W2m_ sin _, _ 0.

The compatibility condition for WI and W2 i8

(36.11)

pltg}h _ _." tg_2. (36. 11)

and this can be satisfied for every such pair of values Pl. p2 for which p,- _ _r.

As LJ2R_I, m I and m2are large, and so the values of TI! at m --m I and m 2 differ

only slightly from its absolute minimum. Therefore the critical axial stress can

be determined with good accuracy from (36. 10). It is applicable also in the case
A, as with

* See articles /IX. 2/ and /IX. 3/.
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ml = mz = i_/L (i-- odd integer)

the boundary conditions are exactly satisfied.

Note that as the boundary conditions in case B are only approximately fulfilled

the form of the corrugated surface can vary considerably from the actual one, but

as Tll changes very slowly near its minimum with change of m and n, the critical

stress will he determined with an accuracy up to t/R in comparison with unity. In

fact, according to (36.9), for p = 0 we have in the neighbourhood of the minimum

¢=1+_1,

where _1 is a small quantity. Let _1 be a quantity of the order of |'t/[_. Then

_+_--_l+:,+l--_, + ¢,_=2+_,

i. e. , an error in the quantity _ of the order of t/_ leads to an error of the order

of t/R in comparison with unity in T11 .

II. Let the critical values of the axial and contour stress be connected by the
relation* :

--p,=MpR, (36. 12)

where kt denotes a given quantity (for uniform compression, e.g., }-1 = 0.5).

this case, according to (36.3)

or, setting

we have

Rp = [D(m*-F nq: k_+ t_tm*/(rn_"4-n')_}:(n_+ _,rn')

_(m2q-n'):rn, _=t:RV]_(1-,'), (36. 13)

Rp = Etm (b2*' "Jr 11_,:) : [_ -4- (X, -- l) ml.

From the minimal condition Op/O_----O we find:

.'_=[3-+- 2m(;_-- 1) | : E1-4 - 2mO''- I) }-_ j •

If l,_z¢, then #p/am>O.

Consequently, m = m o = xR/L.

With

stress

(36. 14)

In

J(l= 1, i. e., if the axial stress before buckling is equal to the contour

_= _, = _"_: _ {36.15)

In the general case

S= _; : (1-_-[_), (36. 16)

* The formulas given below were obtained by us in 1950. In 1953 they were gene-

ralized for the case of a conical shell by A.V. Sachenkov in his candidate's

dissertation presented at the Kazan' State University. See also /IX. 8/ and

/Ix. 6/.
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where _ satisfies the equation

"_2(I-- ZOmo/6z_[[- (|-lL_,r°J:{(l.._,)[l--@(l-}-Lg_]}.

e' =3.sz (_ - _,)_. _= V-_: I_.l,_ (z _,,)'I,).

Hence it follows that

(36,17)

-o,2_<i_<o.2. _o,- o.8>¢>-2.9. (36.16)

Here for _ one can take the smallest (in absolute value)root of the equation*:

p'(9--50') _ _BI6- e')-_ 6' _0, (36. 19)

and the approximate value of the critical pressure is

"= I'3iEt __" (1"33 + 2_'z): [1 -- ! O'(1 -_ _)] 'R 2 (36.20)

the change in the value of p is slow near the minimum. Therefore the critical

pressure found from (36. 19) for a given _ differs even at the boundaries of the

region (36. 18) from its value for a _ satisfying the minimization condition (36. 17)

by less than 0.6%, even though the error in _ is _%.

For shells satisfying the condition

--0.l<_<0.1 or 0.49 _ 3.61(I -_,)0_/ _0.82, (36. 21)

one can set _ = 0, in (36. 17), admitting an increased error of about 1%. Thus we

arrive at the simple formula

I 2£t=Q
:t! -- i.S1 (; -- k,) _J. (36.22),C.__ R:(! -- ,2)'_

In the case of uniform compression _z : 0.5 and _ith the condition (36.21)

0.SSEt : [1 _'6"_V_k_ ] (36. 23)

In the general case, using (36.17) and (36.13), on_ can bring(36.14) into the form

p, = 0.65 Et'"= : [L (! -- ,')¢ R%J, (36.24)

{ [ I 0,(1+_)] } 0,= 2.5_(I-t,)vT_ (36.25)==1: (l_-_) I -_ ' : z(_-_,)'l,

where

For a given _ the corresponding values of O are easily determined from (36.17). A

table of values of a has been prepared on the basi_: of formula (36.25). It includes

the results for --0.1 _<_<0.1, as they are covered, as shown above, by the simple
formula (36.22).

* In the article /IX. 8/ this equation contains a t_pographical error, but the

remaining formulas are given correctly.
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Table II

In conclusion, let us note that the formulas for the determination of the cri-

tical stress wh_.ch were derived in this section for the case of the combined action

of external normal pressure and axial compression, are applicable only for freely-

supported edges. If there is an edge clamping of type B, then the non-fulfillment

of the boundary condition {36. 11) can bring about a real error in the value of the

critical stress. As a matter of fact, if for the loss of stability from external nor-

mal pressure, the buckling of the shelloccurs with the formation of one half-wave

aiong its length, i. e., if the shell is of medium length, then J0_ L. i_. _ ,-. _2_.

and consequently, the values of p for _ : _ I and _ = ,u 2will differ markedly from the

absolute minimum of p. If the shell fsvery short, then _land _ 2are considerably

larger than _, but the theory developed here, based on the assumption of a mem-

brane state before buckling, turns out to be dubious.
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§ 37. The Stability of a Cylindrical Shell of Arbitrary Cross-Section

under Longitudinal Compression*. Shell with Elliptic Cross-Sectlon.

Shell with Longitudinal Corrugation.

Before the loss of stability, just as in the case of a shell of circular cross-

section,

7"1=const, T_=TI_=O. (37.1)

Let the cross-section of the shell have an axis of symmetry.

can be expressed as a function of arc in the following way

_ _ =, cos r/s. i .._-r_4dl,
r=O

Then its curvature

(37. 2)

where 21 is the length of the section contour and a I is an integer.

Obviously, with the loss of stability of the ;hell waves appear along the section

contour and their form will depend also on the fo.m of the contour. Therefore we

shall seek the solution of the equations {35.20), (35.21) of neutral equilibrium in
the form

_=¢os_x _, Bpcos(j+ip)s, (37.3)

p,-.

_-----cos_x _ C, cos(j-_iPls.

where pis an integer and j = _n/1. Here, for

_*_ (2p -_- 1) -_ (37.4)

as shown in § 36, boundary conditions of type A are fulfilled at x = ± L/2.

For the determination of the coefficients B F and Cp we have an infinite number

of equations. Eliminating Bp from them we obtain a system of equations in Cp :

g_,c__,+_,-,_c_+_ _;+_c_,_=0 (37. s)

where we set

tP-- _-_-z+_P + _ (Ip-_ -'cp÷'}'p- e_,
i*wl

tL T I

* The theory relating to this problem has been c erived in §5 16-18 of the

monograph /0. 13/.
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For consistency of the system (37. 5), the determinant of the coefficients of Cp
should be zero:

i ...................... I

Xp-n_ + xp-L X_-L !

& _ X_ ._P_ --

X_ I Xp+_ _P+'(- t+ i
P- P P+ " " " i

I

(37. 9)

The unknown --TI! whose minimum is to be determined and which is an eigenvalue

of the boundary value problem under consideration, is contained only in the diagon-

al terms of the characteristic determinant. Besides, as is apparent from (37. 6),

)n-q -- IP

i. e., A is a symmetrical determinant. Consequently,

called secular equation, all of whose roots are real.

(37.10)

the equation (37. 9) is the so-

As is well known, for the infinite determinant to converge, it is necessary

and sufficient that the derivatives of the diagonal terms and the sum of the non-

diagonal terms converge absolutely.

We shall multiply the p-th row of the determinant by _p/_, Then the product of

the diagonal terms has the form:

_+ _ ++++,)} ,+i{__t+. ,++ + + = +=_,+.•+'i+' ,)+ _= 4 eP-e
p---- p.+ o--+

_a.p converges absolutely even upon the replacement of the quantities f,_ e and

.=p+, by the largest of them, as _=_ converges, and _p --* 0 as i/p 4. Conse-

quently, this product converges absolutely.

We shall replace _p__ and _+, by the largest of them, -_m, in (37.6). Then
the sum of the non-diagonal terms of the p-th row will be less than

and the sum of all non-diagonal terms will be less than

p.-! _--I r=f

and will, consequently, converge as 1/p _.
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* Limiting oneself to a finite number of ternm in the series (37.3), we find the

approximate eigenfunction of the problem. As is well known, the sequence of the

latter converges if the problem has a Green's function, finite at a singular point
/0.23/. In our case the Green's functions are displacements under the action of

point forces and have finite values everywhere. The actual determination of the

critical stress from (37.9) can be carried out only approximately, taking instead
of A a determinant of finite order. It can be shown that of all determinants of a

given order, the best approximation can be given by the one in which the diagonal
terms are

_:I. _ and 41

Without dwelling on the formal proof of this statement, we shall, in what

follows, determine the approximate value of the critical stress from the equation

).:, _I _'ll- to

=0,
(37. 11)

which c an also be obtained from the energy criterion for stability, expressed in the for m

(25.31). In fact, according to the nature of the problem, one can expect to obtain

a sufficiently good approximation by retaining a t mall number of terms of the Ritz

series, taking the components of the additional d: splacement in the following form:

,=sinrJx _ A;cosf,.'+pi) ........... _ Bpsnlj+ip) s.

w=cosp.x _ Cpcosfj4-ip)s.

p- -I

(37. 12)

Setting a2 = a3= ... = 0 in (37.2) using (25.31) md the conditionB = 1, we obtain

13 equations in 13 unknowns A-2, A-1 ..... CI:

_c_ ,_3 0.?.

OA# OBp dCr

where A and B simply expressions in Cp. Thus, in order to determine C_I,
C O , C t wPe obtain three equations, the consistency conditions of which gives the

characteristic equation (37. 11). The reader can convince himself of this by carry-

ing out the calculations indicated which are simpL.' in principle, but rather laborious."

Before going on to the determination of the tpproximate value of the critical

stress from the equation (37. 11), we shall note that limiting ourselves to a finite

number of terms of the Ritz series or, what is th,_ same, replacing A by the deter-

minant of a finite order, we find the critical stre_s with an error on the larger side,

as this imposes supplementary constraints which linder the buckling of the shell,

We shall consider the problem further for t} e two limiting cases when either

i2<<j 2, or i2>>j2.

A. Stability of a shell with elliptical cross-section

Let the cross-section of the middle surface )f the shell be given by the equa-

tion

p=ro(l + _.cos n_p), (37. 13)
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where r 0 is the mean radius and _ and n] are quantities characterizing the deviation

of the shape of the cross-section from a circle of radius ro. Then

% [(1 -- Xcos _c:)" +-k_m_ sin-' n,;]_:-'

(I + .' Cos n,9); + 2a.:ni : sit) a n_ T + ( ] +- h cos s1:9) ;_n_ a co5 n:_

Such a section can be approximately replaced by the section (37.3) investigated by

us if the parameters a_ are so chosen that the curvature of the fictitious curv2 is

equal to the curvature of the given curve. Setting 32= 33= . .. = 0 and equating the

curvature of the curve (37. 13) at the points of greatest and smallest curvature to

the curvatures of the curve (37.3) at the corresponding points, we find that

I - ha- 2_n.' _ + xq.,_ + I) (37. 14)
- _1 =

,..o (I -- ha)z ro(I - h_l_

In the case of a shell of elliptical cross-section

n, -- o i_ 2_/l. (37. 15)

With the loss of stability of a thin cylindrical shell with circular cross-section,

waves appear along the length and the circumference of the shell, so that the quanti-
ties m 2 = par02 , n 2 = jar02 can be considered as large in comparison with unity.

We assume that at least one of the quantities _2 and j2 is large in comparison with i 2

also for an elliptical section of small eccentricity, i.e., we consider that

2J',<<e'+ 2.

Then, according to (37.8)

'{,¢._,(I ;), {_,_Q(_ +C),¢_4i.17e."+., a,

Introducing these expressions in (37.9) we find

Consequently, setting

(37. 16)

(37. 17)

(37. 18),:=_-to.

the equation (37. ii) can be brought into the form

.... •(2.o_,_,+ _:_"÷¢_,_,_,, - _o,.,_,v*+ --:,-, =o (ST. 19)

Solving this equation to the first approximation and considering that the eccentricity
of the section is small, we shall neglect the terms containing _2and a_. Thus, we

find the approximate values of the roots
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*The smallest value of the critical stress gives tile root :=_, for which, minimiz-

ing t o with respect to _-0, we find

Introducing these values of • and {_ in (37. 19), we convince ourselves that it

was admissible to neglect--just as we did--the terms containing _z if _2 << I, as

we had assumed. The term T=,%,1]6 is also small provided that =,=<<_. Of

the terms neglected earlier in the equation (37.19), the largest is

=o==,%=/Z

In the second approximation, setting

and neglecting the squares and higher powers of 0 in comparison with unity, we
find that _ = - _ _._ V-Z

Thus, in the second approximation

(37. 20)

Whence it follows that ..._t.l%, or, in view of (37.14)

On the other hand,

therefore, if our assumption ,++i:>>,_ is not tru( and p2_ i 2, j2 i2, then

we would obtain

=,,__ Ili _ _ 1214n+ _ ro_'

which contradicts the condition _!o_tr+,.

This means that (37.16) indeed gives _,:<< l, which we actually assumed when

simplifying the characteristic equation. *

For a shell of elliptical section, a form of tuckling is also possible for which

j = 0. This form of loss of stability can be called almost-symmetrical in analogy

with the axially symmetrical form of loss of stabi ity of a shell of circular section.

Here, instead of (37.3) we seek a solution of the _ystem of equations of equilibrium-
in the form

{= _B, cosp/.a, _/"= _C_,cosp/s. (3'/. 21)

p--i 9==_

We shall obtain the corresponding characteristic equation from (37.9) by equating

to zero all the _,q and _p with negative indices. I,imiting ourselves again to a

determinant of the third order, we arrive at the equation

lJto °-to x'o X'° l
_.j== _ X=t--/o ),2_ =0,

to= ).z= ),== - t+
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in expanding which we note that in the case under consideration, J= O, r..= O. _2_-_--_o

(since i2<<_2). Solving the cubic equation obtained in the second approximation, we
find

to ,= o__V%,- ,,,, v_ + _o,= (37.22)
I

The comparison of (37.22) with (37.20) shows that a shell of elliptical section under

axial compression buckles in an almost symmetrical form.

B. Stability of a corrugated shell of circular section with longitudinal corruga-
tions.

Let n ] be the number of corrugations along the circumference of the section,

A= _/r,_ for amplitude of corrugation 2 _.

According to (37. 14)

a0-_ (1 -- '-)_.-'nJ) : r0 , az _ ;,nl u : r0, _2 _._ a02. (37.23)

If each circumference wave which is formed under buckling encompasses several
corrugations, then

(i-÷ ])'>_/', (i- j)4 _fl;

therefore according to (37.8)

Neglecting the small terms we obtain from (37. 11) the equation

to_ .- ato _ @ bt o - c = O,

where

a--,_=(_-+ c °j : n, _,:

_Lr_-L[ _ ' 4 _" _,_-_"

The smaller positive root of this equation is

To the first approximation

---- a= (37.24)

In particular, for a 1 = 0 this becomes the Lorentz-Timoshenko formula for a shell

of circular section. For large values of al, according to (37.24) the absolute mini-

mum of t o is not reached for admissable values of _ and j. Therefore one can take

the following as the critical values of p and j
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_ = x/L, ]_ _ 2t//, _, = 2,

which give the smallest possible value for t o .

(37.25)

In the theory of stability of shallow shells (which we have used in investigating

this problem) it had been assumed that n 2 >> 1. Therelore our solution for n : 2

can turn out to be unsatisfactory. In the given ¢ase, however, t o increases mono-

tonically together with n, and at first the iimrease in n is small within quite broad
limits of to, as i2>> j2 therefore, for the values (37.25), the formula (37.24) can

be considered as satisfactory for the determination of the critical stress. Hence,

the number of waves on the circumference remains undetermined. Note that in

(37.24) one can set, within an error of 1-2%,

Example:

We have

2ro=L=4Ocm; 2_=0.915 cm; t=3.9"lO-_cm;

nt -_ 42; E _ 7.2.10 _ kg/c_2; _ = 0.3.

r, _ o._.
_, _ 2.29.10-_: j _ _ ; i = --, _" = 1.39. IO-_;ao = -- _,ro 20

_t _ 2.02; _,1 = 2.457/400.

According to (27.24)

TIt = -- 44 kz/cm for n= 2,

Tt' = -- 45 kg/_rn for n = 5.

For a smooth shell of the same radius, T tI = - 32.6 kg/cm. Thus, in the case

given, the corrugation increases the critical st:'ess by 40%.
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S 38. The Stability of a Shell of Circular Section

under Torsion and under the Action of Combined Stresses

Let a cylindrical shell of radius R be in equilibrium under the action of shear-

ing tangential stresses _ and normal stresses Pl, uniformly distributed along the

edge sections x = + L/2, and also a normal external pressure p, uniformly distribut-

ed along the lateral surface of the shell. The equations of neutral equilibrium (35. 18)

and (35. 10) are satisfied if the components of displacements which appear with the
buckling of the shell are taken in the form

_'_u_$in ,naxq_tta v_'U_Sin max4-ngu /, R ' R (38. 1)

where m k (k = 1, 2 ..... 8) are the roots of the equation

- p=ml-_ Rpn 2 - 2ttnn = Et[(ra_-J-nZ)Z _-_- _],

t _ = t'- : 12Ra (1 -- ,z),

(38.2)

Let

pJ = - 2_, Rp = 2_2_. e = m : ,, (38.3)

where _3 and _'2 are given constants.

Then the characteristic equation (38. 2) is brought into the form

_ ( }) ., {38.4,

The case of a long shell, when ?-LV_, was considered in §19. It had been shown

that in this case n = 2 and the value of/_ corresponding to the critical stress has to

be determined from the equation

o_/d_ = O. (38.5)

irrespective of any boundary condition being satisfied.

In the case of a shell of medium length which we do not consider here, it is

necessary to satisfy at least the most important boundary condition

_=0 fo_ x=_L/2. (38.6)
For this we set

=¢= Ir./,cos ,.,x+.. + W=cos .._+ ea , (38.7)
R

where m 1 and m 2 are the real roots of the equation (34.8) which are small in abso-
lute value: the boundary conditions (38.6) are satisfied, provided that
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W_=Wz=W. mt--mz=_:-_R =2me,
L

n

(38.8)

Note that as had been shown in /IX. 7/, two of the eight roots of the equation (38. 2)

with PL = P = 0, are real, and the others are colaplex. To satisfy the condition

(38.6), we use both real roots m I and m 2. The locus of the points for which w = 0

is defined by the equation

from which, using (38. 8), we obtain

where i is an odd integer.

Hence it follows that with the buckling of t,_e shell, waves are formed, inclined

to the generators at an angle 5 given by the forzaula

tg_=l(m_--moll:n=l_,_[:2. (38.9)

In the case of along shell _<<l and for avery short shellR>>L. In the limit.
when R = _. the problem of the stability of a cylindrical shell under torsion is trans-

formed into the problem of the stability of a flal strip under the action of shearing
forces, whose exact solution with the fulfillmen of the condition of free support or

clamping was given in the article of Southwell aid Skan /IX. 9/. As is known from
that solution and from earlier approximate solu ions, with the buclding of the strip

by tangential forces. 5 = 45 °. We make the assumption, later verified by the solu-
tion obtained, that in the case of a shell of medium length, tg4{} is much smaller

than unity and therefore if ] Ul I < I/_2 t the quantity/_ 1 4 can be neglected in com-

parison with unity

_'<< 1. (38. 10)

We shall first consider the case when

x= = l= =0. (38. II)

According to (38.4)

(381,)

where _==_. for_ =_k (k= 1; 2).

Since I ,2 I is considerably greater than I ,1 I, ( I /_2 i =3 I ,t I (as can be
seen from the solution obtained) the preceding ..quality can hold only when _2 + 1/_2

is near its minimum, equal to two. where, obv ously, to the minimal value of

corresponds a value of/_ 2 for which _2_<1. Hence it follows that _1 is consider-

ably less than _2. Therefore. in the first appzoximation we assume that

p, <._ _...,, p,..{_._..= _,i',p, ...]_1__=2p' (38. 13)
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Besides, in that approximation we shall take

I _ (1 + i,_2_.._ nt.
p_ v.r• p z '

neglecting _5 2 in comparison with unity. Thus, we obtain the approximate equation

2_ _
-- _ -- -- _ -- 2_2, ,,zL, = 2_ (_2 -F 2_o),

from which we find in the first approximation

1_2: -- v-o -- I/ I_o= + 0.5n',_.

_LL =_ + V_-+ o.sa', -- "'+ ]/--_r-_._
£t_ n.

The value of n 4 at the critical load is determined from the equation b: 0n=< It

is

n4 = 6moVie. (38. 14)

"-lere*, denoting the quantity T in the first approximation by T 1, we have:

'q = 1.35 _ Eft 5_4, -- m= = 3t_. -- m, = m,, = =R/L (38. 15)

To obtain the solution in the second approximation, we introduce (38. 14) and (38. 15)

in those terms of equation (38. 12) which were neglected in the first approximation

or which were determined inexactly and use the condition (39. 11). Thus we find

2
-- (n _ + 2too 2= + 0.068 mo l/';-);

,u 1

Introducing these expressions in (38. 12) we obtain the corrected equation for deter-

mining p 2

2_.= (_ + 2,%) az = n"-= ,-}- a..,

a] = 1.083 -- 3.06mo V-_ + 35.4tooL:; a_, = 2m. 2 e + 0.068mo ]/_.

where

Consequently,

..:- +V,+

From condition az/an : 0 or, what amounts to the same, from equation ipz/;n : O,

we obtain

* The formula (38. 15) was obtained by Kh. M. Mushtari in /IX. 7].

See also ]0. 13].
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Hence.

n,, _,l.5..k.__j. ..a', _1..5.__0.4,,_}'r'_+0.014
&at rtb_ ' 4 moral

P.2 _ --
1 _sV-_,_- ( 4 o2,,o¢'_.ooo7

___-__ +

where "t2is the quantity T in the second approximation.

Calculations show that for the quantities m 0 which satisfy the condition

0,03 _<m o 1,._ = 2.390< 0.12, _=V[? : [L]./_([ -- +,=),14], (38. 16)

"[2 exceeds T1 by less than 6%. The succeeding approximations somewhat reduce

this difference. Therefore, admitting the error indicated, with the shell parameter

satisfying the condition (38. 16), we shall take for the critical shearing stress

=,o= _,_ 121 Et(t/2R_ + (2R/L)m: (l --_=)_IL (38. 17)

Turning to the investigation of the general case, when at least one of the quantities

_.3 and t2is not equal to zero, we shall nevertheless assume that the loss of stabili

is caused by the torsion and that the stresses TI! and Tzl are either tensile or corn
pressive, butplay a relatively small role in the buckling of the shell*. Denoting t

I !

T tk, T 2k, T the critical stresses under pure a_ ialcompression, pure outward norm,

pressure and pure torsion respectively, from (35.10), (36.20), and (38.17) we

find

I rl, ! = O.Zo-,_'I T',, I, I T" = 3.20'r'I r[, I •

Besides, according to (38. 14) and (38.15)

Consequently, all the terms of the expression k_?--_-_- t= are approximately the

same if 13 and )-2take values which differ littlefrom unity.

In order for the compressive forces to plsy only an auxiliary role in compari-

son with the shearing stress, the conditions [ _,_ I _ tmOtl2_C l, _ _0m have to be

satisfied. The first of these two conditions is most essential, as when it is not ob-

served, the stability of the shell can be lost under axial compression with the form-

ing of many half-waves along the length of the shell, which would contradict the

assumed form of the buckling. We shall consider _3 and _zas sufficiently small, so

that to the first approximation one could use the approximate equalities (38. 13).

Then it follows from (38.4) that

•2= n_, _ _,,_ . (38. 18)

* The exposition of this question is given her. as a natural development of our

article /IX. 7/. An analogous setting of the problem was considered by

V.M. Darevskii /IX. 14/ in a work whose text, in the form of a published

article, is not known to us.
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Whence, after the substitution _ I = _2 + 2,Uo we obtain an equation of the fourth de-

gree in _2, from which one can flnd92 and thereupon _, as functions of n. In view

of the complexity of this direct method, we shall seek the solution of the problem

by an indirect method, setting

_;+------ Ts : l'+z, )+'2--_ -- T++'P-+., (38. 19)

where "Y3 and "Y2 have yet to be determined.

As ).2, ),3, v3, and V 2 are given quantities, while/J2 is a quantity to be deter-

mined from the condition of minimum critical stress, the proposed substitution

(38.19) has no meaning if the matter concerns an "exact" determination of the stress.

If one sets oneself the problem of approximately determining the influence of the

axial compressive stress and external pressure (characterized by parameters "_3

and _2, small in comparison with unity) upon the value of the critical shearing stress

• + then in the expressions (38. 19) for/_2 one can take the corresponding quantity

_2 ¢, calculated for pure shear with p = Pl = 0, which does not vary in the case of
the action of combined stresses. With small q'3 and _'2 the actual critical value of

_2 will differ little from/J2 ¢ ; therefore, the introduction of (38. 19) in the small

terms of the equations (38. 18) will produce in these equations an error of the second

order of magnitude for "_3 and "_2 in comparison with unity. If, in spite of this, one

considers that near the minimum r(u2) the error in the value of/_2 has a relatively

small effect upon t, it may be expected that even with values of V 3 and "y 2 of the

order of 0.2-0.3, the critical stress will be found with sufficient accuracy.

Thus we bring (38. 18) into the form

2_ _ .,. _ 2_ ,-l- 1 (38. 20)
Et_ _:_ , ;

T:-- "r-_t _ TJ_-_

The negative root of this equation is

i,: __. -- n_- {1 -it- 2T: -_ V/(1 -p 2_-,):-_- _(_T -- 4_) }. (38.21)

From the minimum condition for x (or I P2 I ) we find

n',#= 1.5(I_- 2T::)_4T,'_ -_
2m0"-

-I-- I/li.5(I -I--2T:)' -- 4"/'t,l'-- 4X'f,[4T -- (I m 2;',)"1 =3(I-i- a,). (38.22)

Thus the critical shearing stress in the case of simultaneous action of normal
stresses is

where

=+: +.o+, (38.23)

a=[l +2T,+ V (1 -I- 2T,)'-I- 3tl _-_d- 4m1:[3_+_( _ -t- s,)'ffl • (38.24)

Taking various values of T_ and _2, we determine the corresponding _ from

(38. 22) and then we find afrom (38.24). Then, from (38.22) and (38.21) we find

I_2 [ as the quantity proportional to ]/m0V"_ and from (38. 19) we determine the

corresponding ),_ and )-2• The values thus found for a, ).3. and ).2are given in

Table IIl.
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Table III

_, [ u.9:_ 0._ 1 0.807

._z1/'_ [ 0.033 0.065 0.096

,t_lV" Q [ 0 0 0

-- w/V'-_ 3.00 3.06 3.[0

0.76 0.72

0 0 0-37

0,54

2,70
I

O.552

2.76

Knowing the, geometrical parameter 8 of the shell and the relations (38.3),

from the tabular data one can easily construct curves bounding the region of stability

of the shell under the action of combined stresses. Here it is necessary to remem-

ber that in the determination of the critical load the state of the shell before the loss

of stability was taken to be a membrane state and that only one boundary condition

(38.6) is fulfilled. This latter is the most essential boundary condition, ffone is

considering the stability of a cylindrical shell supported by frames which are rigid

against bending in their plane but are only weakly resistant to torsion, where the

skin can slide along the frames, and the segments between the frames are shells of

medium length. If these conditions are not satisfied, then the simple solution given

above cannot be considered as applicable.

Some attempts are known from literature o_" obtaining a thoroughly well-founded

solution of the stability problem under pure torsion, convenient also for shorter

shells. The first solution of this kind was propo_;ed by L. Donnell, simultaneously

with our solution* given above. Taking the displacement components (38. 11

Donnell also obtains the characteristic equation of the eighth degree in m. Then he

sets

m'/(,n_+ n')'_- m',;n'

and thus replaces equation (38. 2) by an approximate equation of the fourth degree

in m, which is equivalent to neglecting m 2 in comparison with n2.

By further admitting such an error in the b)undary conditions, Donnell manages

to satisfy the boundary conditions of free support or clamping and after a laborious

graphical computation, derives approximate forntulas for the determination of the

critical shearing stress:

// 0.21A= o-_;)l_,r,_'/,"=4.6+} 7.sq o, (38.28)

(when the edges are clamped, if L=t_62.41/'i "- v2,_=),

A == 2.8 -{- 2]/_.6-J-0.]_ (38.26)

(when the edges are supported, if L=t_44V_--_t._=).

Hence, in the case of shells of medium length, wlen 8 <<I, we obtain the formulas

_ 1.83F / t '_=_/a_'_= (W.th clamped edges)

* See articles /IX. 10/ and /IV. 6/, and also the monograph of S.P. Timoshenko

/0. 16/.
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1.67E( t _.(R_'k (with supported edges)

The latter differs from our formula for the first approximation (38. 17) only by a
numerical coefficient which is almost 2% smeller than ours.

The validity of these formulas for shells of medium length was also demonstrat-

ed in another way in the work of N.A. Alumyae /IX. 13]. In the case of shorter

=hells the formulas (38.25) and (38.26) cannot be replaced by the simplified formu-

lae (38.25a) and (38, 26a). In that case, however, Donnell's fundamental formulas

also turn out to be dubious, as they are obtained by neglecting m 2 in comparison

with n 2. Apparently, taking this fact into consideration, S.B. Batdorf and M. Stein

found it necessary to study anew the stability of a cylindrical shell under torsion*.

In the case of supported edges they took the deflection function in the form of a
series

oqsinnS-_.--JrbqCOS_._- sin _--_--_( /_ R) L ' (38.27)
9--t

each of whose terms satisfies the conditions m_ 0_w =0 for x = 0 and x = L, where
d._ z

each term of the series for v determined from equation (35. 18) satisfies the boundary
conditions

= O, TI : O, _ T==ds= O.

For the case of clamping it was assumed that

.= + ?-c=(q+2,7]}
(38.28)

Each term of this series satisfies the conditions

a= _) T,cls:O, _ T=zd$ = O

for x:0 and x---L.

(38.23)

Introducing these expressions in (35.21), we find the corresponding stress function

_, and thereupon we substitute T==c)_,_/Ox_ in (35. 19). We integrate the expres-

sion thus obtained with respect to w by the Bubnov-Galerkin method; we multiply
the left-hand term of the equation by _w and after the substitution of the expression

(38.27) or (38.28) we integrate over the shell surface. Then, equating to zero the

coefficients of 5eq and _bq, we find the infinite system of homogeneous equations

in aq and bq, the consistency condition of which gives the characteristic equation,

determining the relation between the critical stress and the number of waves n on
the circumference. In the work /IX. 12] one considers the loss of stability under

the action of torsion and axial compression. If the main role is played by torsion,

one can limit oneself to the second approximation and determine the critical shear-

trig stress from the formulas

=_jC'O--_=; _2== q,_q, __ (38. 29)

(for supported edges)

• See /IX 11] and /IX. 12].
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" _;;; -j -- H7¢,+ 4..'z¢, + _.6¢0

(for clamped edges), in which

L_-
Q = _- _' + p_--_., r_ 1'' _,, I (r_ + I")_ + ,,' _, ÷ _,i: e,

L_
t*=_-_-, r=O, 1 .....

(38.30)

the value of F, corresponding to the minimal stress, is determined by appropriate

choice.

To the first approximation

_ i/v_._0-I12"

Resides, it is assumed that the shell is not very short, so that the condition

8_0.I. (38.31)

is satisfied. For comparison we shall give the critical stresses of pure shear,

calc,]lated according to different formulas for a Ehell, whose geometrical para-

meters lie near the upper limits of the region of variation of _. as determined by

the conditions (38.16). Denoting the values of the quantity A, calculated according

to Donnell_s formulas (38.25), (38.26), according to ouro formulao(38. 17),3 and accord-
ing to Batdorfts formulas (38.29) and (38. 30) by AD. AD, AM, As, and A s respect-

ively, we find

Here it must be noted that the approximate value. _ of critical stress found by Batdorf

by the Bubnov-Galerkin method--which is essenti_Uy equivalent to the Rayleigh-Ritz
method--are overestimates, since as one increases the number of terms calculated

in the series (38.27) or (38.28), one increases the number of possible displacements

of the shell which lead to the loss of stability of i',s equilibrium state. Consequently,

from the table appended it can be seen that already at the boundary of the region

(38. 16), Donnell's formulas give an overestimate of the critical stress by at least

12%. At the boundary of the region (38.31) this error reaches 20%; therefore, taking
all the aforesaid into consideration, we propose t_ determine the critical linear

stress of the membrane equilibrium state under t)rsion according to our formulas
(38.17) or (38.23), provided that 8 satisfies the condition (38.31). To evaluate the

approximate formula (38. 23), proposed by us for the combined action of stresses

with dominant torsion, we shall compare the valu _.of ¢Laccording to Table III for

8 = 0.0512, 13= 0.42, 12 = 0 with the results of :alculations according to Batdorf's

formula (38.29) applied to that case. It turns out that the value of zk, found accord-

ing to the latter formula, is by only 2% smaller than the value found according to

formula (38.23), although there "r3 = 0.3.
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ChapterX

THE STABILITY AND LARGE DEFLECTIONS OF

CLOSED CYLINDRICAL SHELLS OF CIRCULAR CROSS-SECTION

WITH INITIAL IRREGULARITIES

§ 39. The Concept of Upper and Lower Critical Stresses

In the preceding chapter we have considered the stability of shells having an

ideally cylindrical form, where we assumed that the stressed state of the shell be-

fore the loss of stability may be assumed to be a membrane state. In particular, we

neglected the influence of clamping the shell edges upon the equilibrium state al

before the loss of stability of that state. In this way we managed to linearize the

equations of neutral equilibrium of the shell not only with respect to the components
of additional displacements, but also with respect to the components of displacements

before the loss of stability. We shall call the critical stresses found in this way the

"upper" critical stresses. Obviously they limit the value of the critical stress from

above, as in reality the shells can have initial deviations from the shape considered,

which facilitate buckling, as well as initial deflections from the load even before the

loss of stability. Besides, we did not consider the possible dynamic character of

the stress, which also promotes the loss of stability of the shell equilibrium. Be-

cause of this, the upper critical stresses oR, found theoretically, turn out to be

much greater than the experimental values of critical stress a_. The ratios of

o_:c_t under axial compression are shown in Figure 21.

Ig

0_ _k wailedeyIl_i_"$

°I
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Thin wa Jl_

----" ©yli_l_
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-.::_:.:=:==[

0 IO00 20#0 0 3_00

T

Figure 21

A--celluloid, B--steel, C--steel and bronze, D--duraluminum,

E--steel, F--steel, G--bronze, H--steel.

Here the closed solid and dotted lines are the limits of the region of location

of the experimental points, taken from the works of various authors* where we ex-

cluded the experiments in which the stability of the shells was known to be lost under

plastic deformations.

Analogous results were arrived at by A.S. Vol'mir /X. 8/ and L.R. Ispravnikov

IX. 121.

;--S-e: wo-rk )X-.-14. / and the literature cited therein.
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For torsion we see the experimental coefficient, according to Donnell_s data,

to be 0.60-0.75; with all-ro_a-ld compression it is, according to Ebnerts data, 0.70-
0.75.

In all cases the loss .of stability in the region of elastic deformations occurs

discontinuously (b_ jumps), where part of the energy is transformed into the energy

of mound waves, heard in the form of a sharp "snap".

One should also note the fact that the form of buckling observed with loss of

stability differs from the einusoidal waveform on the entire middle surface of the

shell predicted by the linearized theory. According to that theory, the amplitudes

of the buckles directed from the center of curvature of the shell surface are equal

to the amplitudes of the buckles directed toward the center of curvature, while experi-

ments show that the shell "prefers" to buckle inwards. Besides, a noticeable buck-

ling is most often observed only on a portion of the middle surface (Figure 22).

Figure 22

a--buckling under axial compressiox, b--under torsion

In order to explain the discrepancy between the results of calculations accord-

In_gto the linear theory and those of experiment, it was proposed to make the theory

more exact by considering the phenomena of stabil:ty loss of the shell and its sub-

sequent deformation with the help of the non-linear theory of shells. Here investiga-

tions are possible in three directions. The most i nportant and difficult of these is

the investigation of large deflections and the stabil:ty loss of a shall having initial

irregularities in shape or initial stresses. Partic_darly important is the determina-

tion of the most unfavorable forms of irregularitie:; which lower the stability of shells.

Equally interesting, in our opinion, is the determiltation of critical stresses while

taking account of the unquestionable fact that the aciual state of the shell before the

loss of stability should not be considered as a membrane state even in the case when,

before applying the load, the shell has the ideally correct form. Finally, a question

of no minor importance is the investigation of the state of a shell of ideal shape after

the loss of stability with the aim t,f determining the minimal stress which the shell

is capable of supporting after the loss of stability. If such a minimum exists, then

after decreasing the stress to that minimum the bu,:kled equilibrium shape becomes

unstable and a so-called collapse occurs, i. e., a dLscontinuous passage to the initial

membrane form of equilibrium. The stress at which this collapse phenomenon
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occurs will be called the lower critical stress, and the corresponding stress we shall

denote by Ho K .

For an actual shell

oY<o._<o_.

We devote the following sections to the investigations of the problems indicated,

in the measure in which this is rendered possible by the present state of our know-

ledge about so complex a question.
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§ 40. Lower Critical Stress under _ongitudinal Compression.

A Necessary Modification of the P_tz-Timoshenko Method

The problem of determining the lower critical stress in the case of longitudi-

nal compression of a circular cylindrical shell was posed by von Karman and Tsien

/X.lh However, in view of the fact that these authors, starting from the principle

of virtual displacements and solving the problem according to the Ritz-Timoshenko

method, varied the total potential energy of the system only with respect to the de=

flection amplitude without considering the variation in length and width of the buckles

formed, the lower critical axial load, found by them, turned out to be a tensile

force. A more well-founded theoretical determination of the lower critical stress

was given in the articles /X.2], /X.3/, and /X.4.

Passing to the exposition of that solution, ._e assume that besides the longitu-

dinal compressive load, an interior normal pressure p <0 also acts upon the shell.
We shall make use of the notation of § 35. We shall determine the state of a shell

01 characterized by a finite deflection wl, where for brevity we shall omit the super-

script I. Let the shell have no initial irregulari:ies. By a and b we shall denote

the lengths of half-waves formed by buckling in the axial and circumferential direc-

tions respectively.

(40.1)

The potential energy of elongation and bending, tie work of the axial force, applied

to the ends of the shell, and the work of the internal pressure acting on the surface

of a whole wave, are defined just as in §3 29-30.

They are equal, respectively, to the auantities:

(40.2}

The condition of compatibility of deformations (3. _ .15) and the equation of equilibrium

(35.3) take the forms

DA_w-- o,,_ O,=v 2 o,$ . o_ b • (40.41ds"-'_'-' " Ox_ dxds dxOs ¢_s_ ax_ -- p"
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Substituting in the left-hand member of (40.3) for w the solution of the linearized

equations of equilibrium as a first approximation,

_t = got÷ gttCOS mkX cos nk$,

we find the stress function * in the first approximation and then, introducing w_ and

_2in the right-hand member of (40. 4) we determine w in the second approximation.

Thus, we find an expression of the form

_) =go + gt cos mkx cos nits + g, cos 2_tkx + gs cos 2aks +

+ g, cos mkx cos 3_tks _- g_ cos 3mkx cos nk$.
(40.5)

In article /X.l/, starting from experimental considerations, the expression (40.5)
was taken with

g4=g_=0.

In what follows we shall take, for simplicity, as in article /X.2/,

Whereby,

(40.8)

g2 = g_. (40.7)

introducing (40.5) in equation (40.3), we find the particular integral

u, :.,=RJr .4 2rex q_ 1_ cos ?"_"q-,l, ..... -_ Ll-_ q cos --_- -___

C cos _ cos _s+_ cos _.,.cos R ++-3-;-_ R (t + 9.,)+ -_-

(9 + _,), ]6(1 + _,,), _'jm

+ p,x' l_pj_.
2 -- 2 '

(40.8)

whe re

1 = _ 1 g]n_. C=4gtg+n2+gt,A_ng,+4g=, B=_

F= O=2gtgzn*', H: lGg_-'.

(40.9)

To (40.8) one could have added an arbitrary biharmonic function; however there is

no necessity for it, as of all the boundary conditions we shall satisfy only the con-

dition that the mean longitudinal stress be equal to the external stress. Let

the latter be equal in absolute value to T 0. Then, according to formula (40.8)

Tt=-- _ O_,___ (40.10)
-o d,-_ -- pl.

As with the buckling of a cylindrical shell under longitudinal compression many
waves appear in the axial as well as the circumferential direction, and the influence

of the boundary conditions is attenuated already within the limits of one half-wave,

neglecting the latter hardly affects the total potential energy of the shell and the
critical stress, which allows one to solve the problem in the simplified setting indi-

cated. We further find

et°v=F't["o_ :- k=- -_ _,_+,,j' (_y]=p, +,r0 -

-- EtM (1 g_ + gO -- Ergo + periodic terms
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As in the case of an entire shell v should be a pt_riodlc function of s, we have

J÷,,0-_,-'_,I÷,_'-_,,0-o ,0.1,)p=
/

According to (40.2), (40. 5),

on the surface of one wave

3==J.+ 3b__-_.- _,,.

This quantity should be a minimum, therefore 0_ = 0 , or

- t,o ÷ _To�E-- pR, E -- ta' ( Z gZ 4- _ *t = O.

and (40. I0) we find the total energy of the shell acting

(40°12)

Comparison of this with (40. II) shows that

--,,_, _o=-,,'('e.+_ _-_-,,,_+,,we,.p= (40o13)

Eliminating go we find

Etgb _lt_ _ £t J -- I_.=t J

tl !

- -E;(pc + _ro)( g_+ s_) + [A,#,,+ B,_ ¢_+ c,g_+
(40.14)

where we have introduced new notations

A,=(1 ,-F,u,"): 32, C_=I6H_16,,-_:(].{.-_._) _, F_=II-_C,):2_

4._' 4°'4 L)_- (I + _'):=

(_t = 16(I 4- P.'*)

6(1 --v_) "

We further set up the equations

o3__j_= _3___,= o3__,_ o3_ _ 0 (40.15)

and form their different combinations just as wae done in IX. 21 for the case p = 0;

we introduce the dimensionless quantities

e'-------[_ '_ n_'g? T_ T,,R
ep= (I+P._'Pn _" "t' T_--g=n=' 0 .... . =--8g= £t= "

p* =/L_=-- A_= _'" , -- --

C..,= 1 ÷ _*, D, = 4Cd(,I Jr- _)= £, = _CdD,.

Thus we obtain the following equations relating the critical stress parameters and

the buckle shapes:

_0 - ,'_,'l' (O..-- _)+ [A,/_2(_-- ,'),:l {_-- _,D, +

+_,_.+,_(_+,,,_.),--tO.(A.,,.-c_,+,,._,,.-.,.1-
(4o.17)

--{A=(_--A:)-{-3A: (-; 4'-, 4,4=)'r -[_(AzB=--C,)-I-

j÷'{,+ _,_,+4{,,,-,,1.]_,+,,..({+,,,,)IB,-,,_,.}=.o
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e = I + A, {[(D_-- 1)/:2 (1 -- _) _'l + (4-- B_)T'+
+ (S+ 8,-- _,) _ -- _1 : IS5 + 4A, -- (A,_,-- C:)T}.

(40. 18)

p*(l + p') 4T -- ,'

8 / 12 (1 -- _') T*L
1+ _.-"3

=[0 + ,*)__a--e)_ 4(I --_:)iT. (40. 19)L 4_',

r; +7 =_1_-,'),: 14o.20)

For a given p* the problem consists in finding the smallest of all the values

of T O for which the system of equations (40. 17)-(40. 20) in the parameters I_, _, %

and 0 has real roots, satisfying the conditions

_>o, _,i6> o.

This problem may be solved by the following semi-inverse method: I) we take some

value of 2 2) from (40. 16) we calculate the corresponding values of A 2 ..... E2;

3) we take a series of values of % 4) from (40. 17) we determine for a given _(two

possible values of ?_0; 5) from (40. 18) we find the corresponding {_'s; 6) from

the totality of values of % q% and 0 we choose those for which the equation (40. 19)

is satisfied; 7) substituting them in (40. 20) we find T_ ; 8) repeating the calculation

for various _2 we find the smallest T_ for a given p*.

With p* = 0, these very laborious computations were carried out in /X. 2].

It turned out that

mtn(To*)_-._.0.195 f= _--_0,4. (40. 21)

As is well known, the parameter of upper critical stress is

_' -_0.606 (for v=0.3).

Thus, the lower critical stress at which the return "collapse" occurs for an ideal

cylindrical shell is less than one third of the critical stress for the start of the

"snap".

In contrast to the above-stated process of solution of the problem given, yon

Karman and Tsien took (in IX. 1), as has been indicated above), as the stationarity

conditions of the total energy in the state of equilibrium, the equations

Ogo Og, #g=

varying only the looked-for deflection amplitudes of the assumed wavelengths. Then,

utilizing the relations obtained, they found an expression for the stress parameter

T* in terms of the parameters m and n characterizing the buckle shape. Here, one
0 . . .

had in view the mmlmizatzon of T_ by varying these parameters, without caring

whether the obtained values of T Orain* m, and n correspond to the stationary value
of the total energy. Thus, the problem of determining the minimum T_ while ob-

serving the minimization condition for the total energy was replaced by the problem

of finding the absolute minimum of T_. In the case considered it turned out that

with changing _ the quantity T; decreases monotonically, subsequently assuming

negative values as well. Therefore, in the article indicated it had been proposed,
based on experimental data, to take _ = 1, as a result of which the value T_ = 0.196

was obtained. It almost coincides with the value (40.21). However, this solution of
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von Karman and Tsien may not be considered as theoretically well-founded, since it

had been found in a semi-empirlcal way.

The necessity of changing the form of the usual minimization procedure in the

Ritz-Timoshenko method, as shown in this section, was first pointed out in the

article of Friedrichs ]XIII.4] without, as itseems to us, sufficient explanation.

Some considerations of this question were given in the article /XIII.7]. They will

be set forth in Chapter XlII. Here we note in addition that the necessity of mini-

mizing the total energy with respect to the parameters of buckling frequency cannot

only be dispensed with. but also becomes entirely meaningless ffthe buckle shape

is given by an infinite trigonometric series. However. when we seek the solution

in the form of a trigonometric polynomial with a small number of terms, the prob-

lem of choosing the most suitable wavelengths of the solution sought becomes very

real, and the usual minimization procedure can lead to quite an incorrect result.

To a loid misunderstanding, it is necessary to note that by applying the Ritz-

Timoshenko method according to Lagrange_s pri_iciple, we admit such displacements

which can occur without violating the geometrical relations. In the case under con-

sideration, this means that 8w, determined fror_L(40.5) with the condition of varying

the quantities go. •-* , g5, m. and n0 should be a virtual displacement, In perticu-

far, for a complete cylinder the condition of periodicity of the displacement compo-

nents and their variation with respect to the variable s should be fulfllled. It is

obvious thatthe latter condition is not satisfied if one considers the buckling of the

entire surface of the shell. But ff one assumes that finite deflections extend only

over a part of the surface, then m and n will no longer be discretely varying quan-

tities, characterized by the integral numbers of the half-waves which are formed.

but will be continuously varying quantities chara.'terizing the sizes of the buckles in

the part of the shell under consideration. In thiH case the question of the periodicity

of these or other quantities no longer arises. U ffortunately, however, by approxi-

mating the deflection of a part of the shell by means of a periodic function and not

considering the attenuation of buckling on the relnaining part of the shell, we make

the assumption that the total energy corresponding to this zone of the edge effect is

negligibly small. Consequently, the solutions obtained in this way must be consid-

ered as satisfactory at the present state of the theory only insofar as they still take

into consideration the experimentally observed local character of the shell buckling.

In article ]X.4] Kempner utilizes for the approximation to the solution the

expression (40.5) with the condition (40.6), assu:ning that g2 =_ g3, and finds the

value

mln (To*)_ 0.182 (for _= 0.362), (40.22)

which is only 7 % smaller than the value (40.20).

L. Kirste in the article /X.7/ comes to a result almost the same as (40.22),

considering the shell after buckling as a polyhedron freely supported by its ribs on

a cylindrical surface. This assumption is lent _ome support by the fact that a cylin-

drical surface can apparently be easily deforme.i with conslderable deflections, if

its middle surface remains close to a developafle surface. In the case of the

transformation of a cylinder into a polyhedron, his condition is satisfied (with the

exception of angles). Thus we break up the shell into longitudinal strips of length

a and width b, which are considered as compressed beams on an elastic foundation,

which resists normal displacements, as well as torsion of the beams. The critical

compressive load for such a beam according to _ formula of article /X. 6/ is

_E[ -- n' .. (40.23)

where I is the moment of inertia of the transverse section of the strip,
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x is the coefficient of normal reaction of the elastic foundation. M is the reaction

moment.

If the shell is divided into shallow parts, each strip may be considered as

a slightly-bent circular profile. Consequently,

where t is the shell thickness, a = b/R.

The elastic foundation favors the circumstance that the longitudinal edges

remain, in view of the action of the neighboring strips, on the cylindrical surface.

Therefore, the strips twist in a transverse direction, where under a sinusoidal de-

formation a transverse unit strip of length b is under the reaction force

b b

Q= O ds= D-;;- _osin--;- ds= b; _o,
o

where w 0 is the deflection vector. Consequently.

:¢= 2D_,_/b =, D = Et_ll2 (l -- _)

Analogously, for the reaction moment we find the expression M = 2De/b, where c
is some dimensionless coefficient. Substituting these quantities in (40.23) we have

6,==_ b' <= 4- _='_"4- et"_
To = p* : b = _ ( 12-_-_= ÷ 3== -- _" -- -='_ ]' (40.24)

Minimizing this quantity with respect to a and b, we find

b2_c b' (_ c'',,

,/ 1 I t ="=-"-°" " v

For a thin shell _4 = c2] x2 is much less than unity. For example, for the lower

critical load, according to (40.22) c 2 = 0.017 _2; therefore

To, _, -_ 0,187 EtVR. (40.25)

This solution, based on a number of assumptions whose validity cannot be strictly

proved, nevertheless merits attention, as in it one makes the attempt of construct-

ing an elementary theory of the snap phenomenon, starting from the probable physi-

cal picture of that phenomenon.

In conclusion, we direct the reader's attention to the interesting works of

Tsien Hsue-Shen /XlII.5/, /Xo20[, and /X,21/, in which he considers the determina-

tion of the critical load taking into account the rigidity of the experimental apparatus.
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§41. Determination of the Reduction Coefficient of the Skin of

a Supported Shell under Axial Compression

As has been shown in S 1 of /X. 9/, and als_ in S31 of this work, for a flat

supported plate the exact fulfillment of the conditions of clamping the points of the

skin has, under axial compression, only a negligible effect on the value of the re-

duction coefficient ¢p. After the loss of stability, the cylindrical thin-walled shell

buckles along a wavy surface consisting of a large number of shallow parts, each of

which is almost flat. Therefore it may be assumed that the influence of the edge

effect is also not large in the case under consideration, and that to the first approxi-

mation one can replace with sufficient accuracy the real supported shell by a shell

with relaxation links whose skin is clamped to stiffening ribs only at the points of

intersection of the latter. The skin of such a shell has more possibilities of absorb-

ing the minimum of stress, transmitting the latter to the stiffening ribs, and there-

fore its reduction coefficient must be smaller than the reduction coefficient of the

okin of an actual she11. Consequently, we should obtain a value for q_leading to a

safety factor.

To solve the problem set we shall use the Ritz-Timoshenko method, assuming

for the deflection the form*:

m =f_ sin tna sl. np + fl_ sin' m= sin' n_, (41. 1)

ii$

where a_ _-_k%,,__, ,n, n are integers, while a and b are the distances between

the neighboring transverse and longitudinal ribs respectively.

Then the condition

w=O

in satisfied at the stiffening ribs, and the clampir.g condition at the strip vertices,

i.e., at _ =/'._, _= In (l and I' are integers). ,it the remaining points of the ribs

there is no necessity to satisfy that last condition as ordinarily thin-walled stiffen-

ing ribs resist twisting weakly and hinder the rotation of the skin only slightly.

Introducing (41. 1) in the equation of compat bility (40. 3), we obtain the stress

function where, without considering the edge effe¢ t, we set the arbitrary biharmonic

function equal to (p,y2 + p2x2)/2, where Pl is the mean axial stress, andp2 the
mean annular stress.

* This buckle shape was assumed by A.S. Vol':nir in work ]X. 8/ for a cylindrical

strip. In our opinion, it is more suitable for the case we have considered of a

supported cylindrical shell or a considerable portion thereof.
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Thus we find the expressions for the stresses

--_ _.01,'4- _Etn_ - Jl_ _f I COS2#m
Ox'--_ "!,-- -4- C05 O" -_- i" L 4

_ cos 4_a cos 2_ _ _: cos 2m= cos 4ni3 t_ cos 4ra_

l_ cos 2m_ cos 2nt_ ] _ t t _, F 3 sin m_ Sin 3hi I
-c 2-_-_" i_/I | -I" J U2u" / 2 sin m_ Sin ?Ill

2( + _J J ' L (l_z+ I? (_.-_9p

27 sia ._2m_sin nl_ I 2hi [ /,i_ St.... ,nail(gL_+ Ip -- _ -- d:+ l)_ -t-

_cos 2m7 cos2_F "1

""_---P_+o:--'2-b,--"_Etvn-_tt /,_cos_._4S: L_ 4 4(4_+ I). Jr-

27 sin m= sin 3nl_ 3sin3raasinn_]___2t.p/i$in_iainn l
,_-'+97 fo6,+i),, J-- ,'R,',aL (_, })l +

+S, ¢°'_'"<<__"tGI
4 (_?+ I)' jJ'

.'Etn','{i, alsin, ....in2n_ , ,in2 .....m4n,_
Oxflv _ 4b"----7_ - (4_ _-t- ])_ t- (_ + 4) _

_i_2masin2n_ ] [lSco ...... ,3n_, , 18cos3.'n=co, n_

To satisfy the condition of clamping of the skin to the longitudinal ribs at the

strip vertices it is necessary that the mutual axial approach of points of the skin,

which, before the deformation, lie on the intersection of the longitudinal ribs with

two neighboring transverse ribs, be equal to the contraction of the segment of the

longitudinal rib between these transverse ribs, i. e., the condition

a a

(" '_'_a, f [± ( _'+

for I_ = lr. (1--integer),

should b< satisfied where _ is the mean relative elongation of the longitudinal rib

between ,_,e neighboring transverse ribs. After simple computations, this condition

yields the equation

--P,+_P, i. _ /-'l-- 3 l\
--_=_ T-'_a_ [kY, -1-'_i: )rt:-. (41.4)

The skin is also clamped to the transverse ribs. Consequently, th-e condition

b

r Ov d_ CF I /a)_,l, w I ,'Sw",_]_ ,,

should hold, where _t is the mean relative elongation of the transverse rib.

We shall assume that the tensile and comressive rigidity of the transverse rib

il large, so that one can take "zt _-_ O. Then, from the condition indicated, it
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follows that

\
p== (41.5)

It should be noted that with the assumed shape of the buckle, the mutual approach

of points of the skin lying on neighboring trans _erse ribs on the same generator are

functions of _. This is explained by the fact ttat the given deformation has a period

equal to twice the length and twice the width of the strip (without considering the in-

fluence of rigid bases). In view of this we should choose from the shell a portion of

length 2a and width 2b. Then the relative axial displacement of the edge x = 2a in
relation to the edge x = 0 equals

2atlc.

Therefore the work of the axial load, applied to these edges 0 is equal to

2=

Wl

n Jo Osl

x=ab

(41.6)

The total energy

.9 _ .9. 4- 3b_ d- W/_

is determined from the formulas (40.2), (41.6), (41.1), and (41.2). Setting

I*_plb: k*_ b= It*

._|,X, t/-_=--E,t,q, 32,,"Jt*k'

and eliminating P2 by (41.5), we find

"l"_J :: --S*=_J_:-- ,1 z o*

+ _q_*G - _- p,'O - ¢) ___'
_4n*Ert i '

where

% =6-_2_. ,,J,=: --6 -- 32S':(I +Sz) =,

$z_5+_'[-2+ _2 + "2 4- 72 ].
L

I l 161_4 _ 4(I+I_=_

,I',: ,1,,°4- -_-_',, 9',°= 0 + a,):' _'*'= _{V2_=)•
17 M _ 4M

(1_+ I)Z ' 30 --_)

(41o7)

(41.8)
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The extremum condition of the total energy gives the equations*:

_-7 %-=o

or

h_,' + _.._ - 2_,_ + 2_, + q, (, + b2) : 0 (41.9)

-- X,_.;. --I_Xz+ 3_ (, _ 8,1q,_]-:: s_,'E, t ¢,_:=+_,_,:- ,q,*= 0 (41.10)

Besides, at the boundary of stability the second variation of total energy should be

zero, i.e., the equation

m_;. _=_, (ms, _, o.

should be satisfied, which, in view of (41.12), can be written in the form:

(41.11)

Eliminating the quantities _i and q_, from (41.9)-(41. II), we obtain a cubic

equation in _'2' which can have one or three real roots. One has to choose that

root among them for which the value of lq_I is minimal, and _i2, determined from
the formula (41.9), satisfies the condition:

Here one has to repeat the calculation, varying the integers m and n, and seek that

formofbucklingfor which _p_lhas the smallest value. Due to this, the necessary

computations become very tedious. Therefore, we shall carry them out for the
special case when

a=2b. (41.13)

One usually uses oblong strips for which

1.Sb < a < 3b. (41.14)

We shall assume that the results obtained for the intermediate case (41.13)

will be also applicable in the entire interval (41o14). To simplify the calculations,

instead of the simultaneous solution of the equations (41. 10), (41. 11) for

_,2 and q_ we propose to take various positive values of _2 and to determine the

corresponding values of q_ and 1] _2 from the equations, which are linear in these
quantities.

Repeating the calculations for different m and n, we find the smallest of the

quantities J p_/k*L The results of these simple but rather tedious calculations are

given in Table IV.

* Note that here, in contradistinction to § 40, the total energy is not minimized

with respect to m and n, as the virtual displacements have to satisfy the geo-

metrical boundary conditions where the boundaries of the considered regions

of variation of the parameters are given.
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Table IV

262

0.24

2

2

From the table we see that, for k*<49, tc the lower critical stress corres-

ponds a buckling with the formation of square waves, where one half-wave appears

along the strip width, Further, with 49<k*<87, at the lower critical stress each

half-wave occupies the entire length of the strip. With k*_109 the strip width be-

gins to divide into two half-waves, where up to k*_<196 square waves are formed

and then there appear oblong pits, buckles, etc. The value of the lower critical

stress is also repeated with a fourfold increase in k*.

The mean axial elongation of the skin is equal to the mean elongation a_ of

the longitudinal rib given by (41.4). In our case the mean elongation of the

transverse rib is zero, as is the mean elongaticn of the skin of the transverse rib,

and therefore the formula (41.5) is valid. In order for the skin to attain this elonga-

tion without buckling, an axial stress

T,= Et,_ :(l - ,2),

is needed which in view of (41.4) and (41.5) is e]ual to

T,=,, "+',._ ""°' (i,'+gi,')+.÷,,1.4R (I -- vz) 8bl(I -- ,_)

Meanwhile, the mean stress in the skin as it bu( kles is p_. Therefore, the reduction

coefficient of the skin under axial compression is

,= .,':{.,._,;_+,'-<'+ (,,'+ ,.'+_ (41. 15)

Our problem is to determine the smallest value of this quantity for given

values of the torsion and stress parameters. A + is well known, at the upper critic-

al stress IPl*t:k*_0.6. As had been found abo.re, at the lower critical stress

Ipt*t:k*>_0.24. We shall therefore determine q at various stresses, beginning with

those for which tPl* I :k* > 0.24. The corresponiing values of _.land _-2 have to be

determined from (41.9) and (41.10). But the latter equation is cubic in -_z- There-

fore we shall seek the solution of the problem bt assuming the values of }¢ and _2,

and then determining the corresponding ql*, and therefore also Pl*/k* according to

formula (41.10).

Thus we construct the following table of vl lues of ¢p with

Je* =61.6, a =._b, (41. 16)

where it turns out that the smallest values of _ ire obtained for n = 1.
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1

2

Ip.*j/O'l

I/2 o 247
o. 373

o 56,8

o.38
0,4._

O. 56

]. 02
1-88

, I-i'
0 586 t 312`

0.577 II).615 3

043 4

037

0.37 2

0,_4_

0,44

IP_)( It_ e

I 085 04,52

1.420 o,407

2 092 0,383

0.95? 0.5[

1.22 0.42

1.69 0.38

2.40 0.36

Table V

For a practical application, however, it is more convenient to express ¢_ as

a function of the mean elongation of the longitudinal rib. Therefore the data in the

table are shown in graphical form, where the quantities ,_R/t are taken as abscissas.

The necessary computations were made using the relation

-- ,_ R/t = (1 -- _D pl",.'_*_.

As can be seen from the table and from Figure 23, as the axial stress para-

meter increases from its lower limit, the first minimum of the reduction coefficient

is reached at _= -_ i.e., for the form of buckling with square pits. Then, at

]p_/k*[ = 0.38 there is an abrupt passage to the form for which _= 1, where the re-

duction coefficient abruptly falls from 0.57 to the value 0.43, and then to 0.37. Fur-

ther, it increases to 0.41 as the load increases. At ]p /k* I = 1.32, the smaller val-

ue of ¢_ begins to correspond to the buckle form with _ = 3/2, and then with 8 = 2.

Hence we see that after the "snap", the apparent strength of the skin increases slow-

ly with a rapid increase of longitudinal rib load, and the decrease of the reduction

coefficient is rapid at first, and then slow.

0.5

O_

Q3

U" &a

Figure 23

<Z "-!"

_t.) a..o

The corresponding experimental points of A. S. Vol'mir are given in the graph

of Figure 23. They are close to the calculated points.

In conclusion we note that initially we had been considering a more general

form of buckling than in (41. 1), namely, we had been setting

_A sin mz_ sin n_ -_-f: sin'- m-_ sin' n_.

Here we do not give the results of these calculations, since it turned out that the

case m_ = m2 corresponds to the minimum of the lower bound of the stress, as well

as to the minimum of ¢p.
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S 42. Determination of the Lower Critical Load of a Shell

under Uniform Compression*

We shall consider a closed cylindrical shell supported by transverse ribs,

which are rigid against bending and compresaior, and weakly resistant to torsion,
as in § 41. The skin is assumed to be clamped to the transverse ribs at the points

s - 0, b/n ..... (2n--1)b/n, where n is the integer to be determined. We shall take

a to be the distance between the neighboringtransverse ribe, P l and p z to be the mean

values of the axial and annular stresses and p to be the external normal pressure,

acting on the lateral surface and on the bottom o* the shell, _ _ a.RR
d_

We shall determine the smallest value of _ for the form of buckling given by

the deflection

• wz=fl sin _x sin =x_-4-/_ _ln _ -- ( 42. 1 )
-- a b a '

We calculate the stress function W, the membrane stresses, and the axial displace-

ment A I of the skin points lying on the transverse rib x = a, with respect tothe points

lying on the transverse rib x = --a, as in S 41. Then (42. I) gives the expression

(42.2)

and the condition that the mean annular elongatio_l of the skmand the transverse
ribs be zero leads to the relation

• tn31_t f f2 4b 2 (42.3)

The total energy of the shell per unit area of the middle surface is determined in the

case under cons ideration from (46.2) and (40. 12)

,,..

_' p](l -- _2),
Ea_la_

(42.4)

in the derivation of which, besides (42. 1), (42.2): we used the relation

p=-- 2pdR (42.5)

and employed the notations

* A more detailed exposition of this problem can be found in the work of

F.S. Isanbaeva /X. 10/.
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¢,,= -I-2, _,=-- + --_
• (1 + _,2)_ .311 -- .2) __ ,

¢_ = 24 +-- _, +
3(1--42) ' {1 + ._)a {I + 9,_) _'

6 16p_ e = _

i,_ il +F_P ' al/-_. "

(42.6)

From the conditions that the total energy be stationary

we obtain the equations

(2 - ,) q, + ,_,_ - _,_?_ - (._ + q,) ¢2= 0; (42.8)

Here _ ..... _5p are the derivatives of V_ ..... _/s with respect to _t.

Thus the problem reduces to the investigation of the interdependence between

the parameters ql, _7, _z, and la, defined by the equations (42.7)-(42. 9).

Choosing a parameter fl from this system of equations, one can find the small-

est value of Iq _1 which will also be the pressure parameter of collapse for that 0.

However, this method of solution of the problem involves very lengthy computations.

Therefore we determine the lower critical load by the less tedious inverse method,

without initially choosing the parameter 0. The essence of the method is the follow-

ing:

1. We determine the quantity _] from (42.7) and eliminate it from the re-

maining equations. We thus obtain two linear equations in qt and 0, whose coeffi-

cients are known functions of _ and F;

2. Taking particular values of _t, we calculate 61, 6._ ..... $_ from (42.6);

3. Taking a set of values of _0 for a given _t, we find those values of

q_ and {_ for which the ratio of p to the critical pressure Po, determined from the

linear theory, is minimum, We take this p to be the lower bound of critical press-

ure for the given 8. Here tthe condition ',_{} should be used. The value of P0

is determined from the formula:

$£ r.,q t sp

p, ig(t_-)i_- _- \/('_'_'}:11--0._11, (42. 10)

and we find the ratio P/Po from (42.5), (42.10), and (42.6):

(42.11)
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4. Repeating the calculations for other wJues of _, we find the critical pres-

sures for a series of values of 8. The calculated results are given in Table VI and
shown in graphical form in Figure 24.

_" \{
!

I j

008 0/4

/
J

J
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J
_/2 _J4

--0
a_

Figure 24

0.75 0.65 I 0._ I 0._ 0.4 0._

o o,171 i o.i_7 o.1o5 o.o91 i oo62 0,_

,',o10_10._2t0.']41"._I0.67'0_']

Table

0.30

0.038

0.720

VI

On the basis of Table VI and the graph, we conclude that the smallest of the

ratios P/P0 is 0.678 and corresponds to 8 = 0.06_, characterizing a class of short

cylindrical shells. With the increase of shell le_tgth, 8 decreases and the ratio

p/p_ increases, approaching unity. With decrease of the length of the shell, i.e.,

wit_ 9>0.062, the ratio P/P0 also increases. It would seem that here the influence

of the non-linear factor should increase, but the results given in Table VI show the

contrary. This is possibly explained by the fact that the form of bending chosen

for very short shells does not entirely correspond to reality, From Table VI and

the graph it can be seen that with the increase of 8 from 0.048 to 0.105, the change

in the ratio P/Po is insignificant. Therefore, the lower limit of the critical pressure

for the parameter 8 in the interval

0.048 _0 < 0.105 (42.12)

can be taken to be

p _ 0.68po, (42.13)

and for smaller values of O one can use Table VI.

Table VI illustrates the dimensions of shells which are included in the given

interval of the parameter 8.

In order to verify the applicability of the in'-erse method, calculations have

been carried out by the direct method for two vahes of 8 lying at the boundaries

of the interval (42. 12). The results of the calcu1_ tions have shown that the inverse

method does actually give the minimal values of q i and P/P0 for a given 8. In

conclusion we note that from the solution given one does not obtain the exact yon

Mises formula for the upper critical pressure deJived from the linear theory.
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8 0.038 0.048 0.062

R_ for
'R--_ _0 t 1.6 2.04 2.63

Ri= for 1,06 1.36 1.75
!R _ 4o0 t

0.075 0.091

3.17 3.85

2.2 2.57

Table

O, 105

4.45

2.97

VII

As is well known, the deformation of the shell before the loss of stability consists

of a membrane part and an edge effect. Usually, the edge effect is neglected, assum-

ing that before the loss of stability the transverse ribs do not resist compression,

i. e., do not take any transverse load. Meanwhile, it is obvious that the shorter the

shell, the greater the load which will be taken by the transverse ribs. After the loss

of stability, the transverse ribs in carry increasingly large loads. In view of this,

assuming the form of the bending given by (42. 1), we consider that at the instant of

the loss of stability fl = 0, but f2 4 =0 , i.e., the shell has an axially symmetric,

barrel-shaped form. We approximate this state by the deflection w = f2sin-_-t,

where the transverse ribs are considered as uncompressed. This assumption as

well as the assumption of non-resistance of the transverse ribs to compressions is an

idealization of the problem. The real situation lies somewhere in between. There-

fore, both approaches to the problem are useful. To determine the values of f2 at

the appearance of the non-axially symmetric buckling, we set _I2= 0 in equation

(48.8). In view of the smallness of 9andof(42.11), one canset _3+ q1=24.

Consequently

C2 =(_--)v, __(Z-,)q_ or ]'z-= 4(2-_) p,b
+ q= 24 8 met '

Substituting for f2 in formula (43.3) with fl = 0, we find

-- ('--+-' ,),,,,or p,= 1.43p,(for, = 0.3_.pz
J

According to the membrane theory, P2 = 2Pt, as is well-known.

Thus the mean annular stress in the skin at the moment of stability loss turns

out in this case to be by 70% of that in a slightly compressed web frame. A further

deflection, as can be seen from formula (42.3), appreciably affects the mean annular

stress, which was to be expected. Meanwhile, by taking IP2]:[ PJI = 2 = constant,

we would not at all take into account the influence of the web frames even under large

deflections.

Passing to the determination of the upper critical load, pu, let us note that in

the case of shells of medium length the solution given yields the same results as

the yon Mises formula. However, in the case of shells of smaller length the ratio

of the upper critical stress (obtained from (42.7) and (42.8)) to the upper critical

load (obtained from the membrane theory) is less than unity. As is apparent from

Table VIII, for short shells the value of the upper critical load is approximately 11%

less than the value obtained from the yon Mises formula.

This result should not be considered as unexpected, if one takes into account

that from the very beginning we have inward deflections due to which--in the case
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of a short shell--the axial compression must suLstantially reduce the stability of the

shell with respect to transverse presmure,

/a 0.4

H 0.080

P/Po 0.917

0.__[0.8[
o.9o31o.8931

Table VIII
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§ 43. Determination of the Upper Critical Load of a Cylindrical Shell

with Initial Imperfections under Axial Compression
and Uniform External Pressure

The problem of the influence of initial imperfections of a cylindrical shell on

its stability under axial compression was first investigated in the non-linear theory

by L. Donnell/X. 17/. Later, together with K. Yan, he carried out a new, careful

investigation of this problem /X° 4/, using the Papkovich-Ritz method. Here it was
assumed that the deflection w due to the load is similar to the initial deflection w °

and, consequently, for a given load

C_ l -I'-2_-_/_ _ const. (43.1)

If one uses this relation and omits the index "r' in the formulas of § 35, then the con-

dition of compatibility (35.15) for a circular cylindrical shell can be written in the

form given in IX. 17/:

_, I t/_ _ __ 0
aA,_- Et fc[( _ V - _" _lA - _ _-_'J- ' (43.21' ( L\a._Os J Ox2

We shall approximate the deflection due to the load by the function

¢' _..x ns _ + c cos -- -I- a/
= at \ cos -_- cos _- + b cos R /"

(43.3)

The initial imperfection of the shell is characterized by: a) initial deflections

from the ideal form, b) initial strains, c) anlsotropy of the shell material, etc,

Let us note that one should not neglect the possible effect of the anisotropy of a poly-

crystalline material as it can turn out that for a thin shell, only a small number of

crystals are situated along its thickness. Following Donnell, we shall assume that

all the imperfections indicated act like an initial deflection from the ideal form and

that their total effect is defined by some given deflection w °.

Obviously, the effect of the initial deflection depends not only on its ampiitude0
but also on the dimensions of the part of the shell under consideration. For example,

if a rectilinear strip, whose length and thickness are equal respectively to 1 and t,

has an initial deflection a°t approximately given by the sinusoidal form

of _ a°t sin "_x/l), (43.4)

then its initial relative curvature is

_o _ t a"_°_== a0__ sm __ .

The maximum of this quantity, characterizing the effect of the deflection on the de-

formation due to the load for a given value of a °, is proportional to the ratio t2/l 2.

Consequently,
a° ffi (U/_) (UO', (43.5)
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where U is the roughness factor of the strip, being approximately the same for all

the strips irrespective of their dimensions if their manufacturing technique and the
material are the same.

Analogous considerations also apply to a snell under axial compression, if the

initial bending is defined by a function of the form (43.3). Here it is necessary to
envisage the possibility of waves being formed along the length as well as along the

circumference of the shell; therefore, if the buckling is equally probable in both
directions, it is worthwhile to take, instead of (43.5), the relation

a o = (U, :') (Lldt_),

where i x and 1s are the corresponding lengths of the half-waves.

But in the majority of cases thin-walled cy inders are constructed by bending

flat sheets, due to which buckling along the axial direction takes place before buck-

ling along the circumference of the cylinder; therefore

It is obvious that l--q cannot be negative. For the sake of definiteness we

shall assume that q = ½. Calculations show that this choice hardly affects the final

result. Thus, let

a o = (U/_ z) l_"s_'_'t2 = UR_/(_ ' +n'tt).
(43.6)

We find _ introducing (43.3) in (43. 2) and then, using (40.2), (43. 1) and (43.6),

we set up the expression for the deformation energy. Here the mean relative short-

ening of the shell e turns out to be

Cheat ( 43. 7 )=_-'_ ee''at (8b_+l), e ....
e ,_- 4R 2R "

where o is the modulus of the mean axial stress.

If for given o and UR/t the value of e does _ot change, as is the case for the

testing of shells under compression by rigid testi_ g machines, the work of the ex-

ternal load under varfations of the quantities a, b, c, _t, and e will he zero. Con-

8equently, in that case the total energy of the shell .9 is equal to its deformation

energy. Determining the parameter d, as in $ 40 from the periodicity condition

of the annular displacement v, we set up for the d_termination of the equilibrium

values of a, b, c, _t and e the equations:

03 o._ 0,.9 03 0.9
Oa Ob Oc Ol, Oe (43.8)

Solving them simultaneously with equation (43. 7), _ne can construct a series of

curves for various values of UR/t, which express _he dependence between the quan-

tities o/o u and e le u where o u and e u are the corr._sponding quantities found

from the linear theory for an ideal shell. In Figuie 25, taken from article /X. 4/,

are given graphs for the values of UR/t from 0 to (.4.
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The necessary calculations (for small values of UR/t and for values of o/cu

greater than 0.75) were carried out with the help of the equations (43.8). The re-

maining graphs were obtained by minimizing the energy only with respect to the

parameters a and n with fixed values ofb = 0.18, c = 0.03, and _= 0.728, taken
without sufficient basis. This could have eliminated the most suitable roots of the

system of non-linear algebraic equations (43.8). Therefore the numerical results

of the investigation with a<0.75 ¢_u needs to be verified and made more precise.

But the qualitative aspect of the phenomenon is apprently satisfactorily described

by the solution just considered. As can be seen from Figure 25, for UR/t _0.2

every curve a -- E has a peak p, after which the further mutual approach of the

shell edges can occur without increasing the load. If the shell is thin, then this

peak is reached earlier than the stress in it reaches the plasticity limit asof the

shell material.

In the case of less thin shells, the loss of stability of the shell occurs after

reaching the limit of plasticity, so that, in fact, we are dealing with the investiga-

tion of shell rigidity. In Figure 26 are shown graphs constructed on the basis of the

graphs of Figure 25. Here the solid line is the plot of the peak value a!Ou against

the quantity UR/t, and the dotted lines show the onset of plastic deformations for

the corresponding values of the quantities UR/t and os/UE. For example, if the

shell material and the conditions of its preparation are such that os/UE : 5, then

with UR/t_0.076the peak stress, equal to o= 0.5_u, coincides with the onset of
plastic flow; with 0<UR/t<0.076 the plastic flow starts after the loss of stability

for the corresponding values of o; for thinner shells, UR/t > 0.076, a purely elas-

tic buckling occurs at the peak stresses, defined by the points of the solid line to

the right of the point o = 0.5au.

Calculations carried out by the above method for the value U = 0.00015 have

led in many cases to values of critical load which are considerably in excess of the

values found experimentally. One of the possible reasons for this discrepancy bet-

ween theory and experiment was indicated above. A second reason can be the fact

that in the solution given we considered only such forms of buckling which are simi-

lar to the initial deflection from the ideal form of the cylindrical shell, which nar-

rows down the class of admissible functions for w and may lead to excessive theore-

tical values for the critical load. In that connection, let us note that not every devia-

tion from the form of a circular cylinder decreases the critical load. For example,

in /0. 13/ it was demonstrated that a sinusoidal corrugation of a cylindrical shell

along the circumferences of the cross-sections considerably increases the stability

of the shell under axial compression. It is obvious that the corrugation of the gene-

rators which produces a middle surface formed by the rotation of a sine curve

should increase the stability of a shell under external normal pressure. A search

for such advantageous initial deviations from the circular cylinder, on the basis of

247



the non-linear theory, was made in the article of Tsikal /VI. 13/, which is the first

serious attempt to solve this important problem.

¢u ;,_

G$ ''

Figure 26

-- loss of stability under elastic deformations

..... loss of stability starting from the limit of plasticity

Quite recently, Nash has carried out an investigation/X. 15/ on the stability

of a cylindrical shell with initial imperfection_ under the action of uniform compres-

sion, starting from the equations of compatibility (43.2) and the expression for the

total energy (40.12) and (40.2). He approxim.tted the desired deflection by the

function:

?
(43.9)

which coincides, in fact, with the form of the deflection (42.1), utilized in IX. 101

for the determination of the lower critical pressure with uniform compression.

The second term of the right-hand member of this expression represents a

symmetrical buckling toward the center of curvature of the shell, which lowers the

potential energy of the shell which is increased by the transverse compression,

while the sinusoidal part corresponds to the f(.rm of buckling of an ideally shaped

shell, if one takes for n the number of waves :alculated in § 36 from the linear theo-

ry. Since the critical uniform pressure pcal :ulated from the linear theory is great-
er than the experimental values by at most 30-35%, one can hope that the form of

the deflection (43.9) will turn out to be suitable as an approximation of the buckling

of a shell whose initial deviations from the ideal form are not large (for example,

ao_0.5). The form of the initial bending will )e assumed to be similar to the deflec-

tion under load, i.e., we shall assume

w0_ a0l [sin -__ sin ex._.÷ c _]. -- cos 2.x._L_}_.'C_
(43. lo)

Here one satisfies the geometrical boundary condition w ffi 0 for x : 0 and x = L,
which in the case under consideration--in contradistinction to the case of axial com-

pression-is very important, as the smallest ,'ritical load corresponds to the for-

mation of buckles and cavities of lengths equa to the length of the shell. Besides,

in solving the problem one has to satisfy the equation (42.3) characterizing the con-

dition that the mean annular elongation of the _ransverse rib skin be zero. Thus,

one constructs the expression for the total energy ,9 as a function of the quantities

p, a, n, and d, and minimizes it with respect to the parameters a and d, i.e., one

sets up the equations
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O,.9/aa _ O, O,.9/Od _ O. (43.11)

We shall not give all these computations here. Let us merely point out that it is ad-
visable to determine the roughness factor U ° in the case under consideration from
the formula

a° = U' {h l,/[(t, + l,) t It', (43.12)

where 1 = L is the shell length and I, = xR/n is the length of a half-wave along the
circumference. Here, on the basis of numerical calculations carried out with the

equations (43. 11) for various shells for which experiments were made by Windenburg
-and Trilling /X. 18/, Nash proposed the value U ° = 3 • 10 -4 . The number of circu-

lax waves was to be determined for the first approximation from the theory for
small deflections. Then this value of U ° was used to determine the critical hydro-

static pressure for a shell having the following characteristics:

L=20.3 cm, R=20.3 cm, t=0,229 cm, E_2.02.10'_ kg/cm 2,

_=0.3.

Although the parameters of the shell were not taken into account in the indicat-

ed processing of the experimental data, the critical pressure found theoretically
turned out to be, for a ° = 0.15--0.20, as can be seen from Figure 20, approximate°

ly 20 kg/cm 2, while in the experiment the shell buckled under a pressure of 19.6

kg/cm 2. It is possible that with the assumptions made, such an excessively good
agreement between the theoretical and experimental results is to some extent acci-

dental and in other cases the error of a given solution will turn out to be somewhat

larger. Doubt as to the reliability of this solution is also caused by the fact that in

the minimization of the energy functional the equation d,9/On = 0 was not used; in-

stead of this the critical pressure was minimized with respect to the parameter n.

P

kg/cm2[ ]
20 amFo

Figure 27

However, for uniform compression the shell does not have such a variety of
possible buckle shapes as in the case of axial compression, in which for small de-

flections the ratio _ of the frequencies of the buckles along the length and along the
circumference remains undetermined. Therefore Nashts solution can be considered

to be satisfactory as a first approximation.

Unfortunately, in article /X. 15/ the author limits himself to the consideration

of the one example indicated above, and does not give any tables or graphs which
facilitate calculation. Besides, the values used for U ° found from a certain set of

experiments, can lead to considerable errors in the calculation of the critical pres-

sure of a specimen prepared under other conditions. We therefore propose to deter-

mine the relationship between the load p and the parameter a ° without using the
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expression(43.12), making use of the express ons (43.9) and (43.10) and setting up

the equations (43.11). Here, one can take n to be the number of waves along the

circumference, using the formulas (36. 13), (36.15) and (36.17), in which one has

to set m ,=, gR/L, }_,= '/l. Let p be the pressure eorresp(_.lding to the maximal deflec-
tion w from the load, p be the critical pressure determined from (42. 10) for an
ideal shell. We also introduce the notations

¢ = a' _-,

Then the results of calculations carried out by F. S. Isanbaeva for various values

of t ° for _) = 0.07 are given in graphical form in Figure 28. As can be seen from .

these graphs, to each value of _0 _< 0.2 there corresponds a pressure maximum,

after reaching which the further increase in deflection occurs with the falling off of

pressure or without a noticeable increase of it This value of pressure may be con-

sidered as the critical pressure for a shell haxing, at least on part of its surface,

initial irregularities of the form (43.10). It turns out that in the region of maximum

pressure, the curves _0 = const almost coincide with the curves w ° =const, and
therefore, together with the values of t ° the corresponding values of w ° are also

shown in the graph. This allows one to determine the peak value of P/P0 for a given

initial irregularity w °.

;t *:°oa c"_-''-'L .... -"-J _ "-"

o, / I _"._--'i'--F,;,;_F -= =-_=-

,,s /lli;,,". I *'°"
o. ID"t I
_j nl 03 O_ 1" _ /J

lid r

Figure 2_

Note that here one attempts to determin_ the critical load with a form of the

initial irregularity which is similar to the desired form of the deflection. For ex-
ample, in the formula (43.10), instead of a fixed parameter d o characterizing the

shape of the initial irregularity, one fixes the parameter d at the very beginning of
the calculations, although this substitution should only be carried out after setting

up the expression for the total energy and its lnintmization with repsect to d.

The error thus introduced into equations like the second of (43.11) cannot lead,

in our opinion, to a considerable error in the lalue of the critical load, as in the

region of the extremum point of the load vs. deflection curve, the changes in the

load are slight even for considerable change ill the deflection. These considerations
were confirmed in the case considered in $ 44 by the corresponding calculations of

N.I. Krivosheev /X. 19/.
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S 44.

To supplement 5 38 we shall adopt the following notations:

I--_L/cosl}, H= 1/402 , A=(1 -vz) -L_ T

r* = 16_r2AIH 2 is the dimensionless stress parameter.

_=_Rlln, p=sin:_,

The Stability of a Shell Having Initial Irregularities under Torsion

{44,1)

where ffis angle of inclination of the waves to the generators of the cylinder. We

shall refer the shell to oblique axes x t, y', which are connected with the cylindrical

coordinates x, s = y by {26. 17). We assume that the x t axis is parallel to the wave

crests which form with the buckling, i.e., in the (26. 17) we set

The expressions for the potential energy of the middle surface and the bending energy

in the x', y' coordinates are

-'.
0 •

ayJ

e_ 2cOSOuJ _)|

+_o-,IV o_ y_ o_ _lla_,,w
L\ O,' oy" ] Ox,, Oy, ..l* (44.2)

The length of the arc described by the end point x = L of the shell rotating about the

end point x = O, is approximately equal to

£ £

5C°a+ el.'+,,-g( _; o.e, +
o

o., t,e, + o# ,_+ o,,,o_ / a,.+aT,_,_ -eT/ g o,,j

Then the work of the applied load is given by

t

= ,f rl 2(' +,) ,,

c°'o,.,o.
(44.3)

The total potential energy of the shell is equal to:

3 1 3. -]- ,gbe_-- We .
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With a hinged support the following boundary conditions should be satisfied at

x i = 0 and x I = l:

o_'@' ,] _ -- O, (44.4)

a% =0, O%--J-sin80-_-_-_--,cos_.
_y--_ Ox'Oy' Oy" (44.5)

Let the ends of the shell be supported by transverse ribs rigid in their plane

and weakly resisting to torsion and bending out of their plane. We shall also assume

that they can be considered as inextensible, i.e.,

"t =0. (44.6)

We shall consider a shell with the initial irregularity

= fo t (sin\ --_- sin -_ --}-f sl n- -_- sin" -_- ). (44.7)

For an approximate solution of the problem we shall use the Ritz-Papkovich method,

taking the form of the deflection to be

Thus, Just as in § 43, we assume that the effect of the torsion will be to in-

crease irregularity while retaining its form. In the right-hand member of the equa-

tion (26.19), introducing (44.7) and (44.8) and integrating, we obtain an expression

for _. The biharmonic part of the solution is taken to be of the form

cos' _[P_'* + --'--(x'y'- .(: s|n
L 2 cos _, _)]" (44.9)

The distances P are determined from (44.6), whmh we shall, as before, satisfy

only in the mean, setting

21R

= t_.]_fOt, dy,=Oat x'=O and x'=l.
¢t 2r, Ro_ Oj

Substituting for *, and using (44.7) and (44.8), we obtain

P I ,_ r)-si. (44,10)

whe re

= | + 2_.0, _ = f, tn'/R, }o = fo tn'/R. (44.11)

(44. 8) satisfies the geometrical condition for w : 0, and satisfies the static conditions

(44.4) and (44.5) in the mean. This is admissabte, as in solving the problem by the

Ritz-Papkovlch method, static conditions are no the essential boundary conditions.

Using (44.2), (44.3), (44.7)-(44. 11) and th_ expression obtained for _, we

calculate the quantity
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128 n'9 (.:_, .... . -- 2 '.,p {r_ (I, _, + p _ + _,) + : ([, v. +/_,} "4"
tRLE

(44.12)

where we have set

[ tZlZ )=?_':( 17-Zh.-" +2_+y_,. _.,=3 + _',

._= yq-_ _o4_± 121b" +64h_-+_ - 4),
821 all a_

4___p,= -- --4p_'-- '-=-[(pq-4p')b,,--32p._'(Iq-4p')l,

_ = - 12--32 _-_-'[(p-{- I_') b,, -- 8p_'(l nu _')],

_ = 12+ 4: + 2 [[(p+ 4_')' + 16,_,_']b,: --
_LJ

4,,' I p2_]_31_,),- 64p:(1 + 4._')0 4- _ :)}+ 6-_-._,(_ + _' + _

ba.-O_-_-_pa)'Jc-p(2ikp) ', (i- l, 2; /t._ I, 2, 3),

aa = {(/' + t',l")' -- P {2z_)'p. (44.13)

With the given form of the initial irregularity, the values of the parameters

_0, P, and p are fixed, and therefore the expression for the total energy contains

only two arbitrary parameters _ and f and the minimum condition for ,9 yields the

equations

03,/d/=0, a3d_,=O.

Developing these equations and eliminating ¢* from the second we obtain

, ,,.,. (44.14 / t-T!

(3 _, - 32 _,) (Pf' + 3 (_, -- 8 _,) £' [2 .p (6 V. -- 16 ?t) ¢' f -t-

q- (3 _, - IG _,) ¢/- S _ _= - _, {(3 _= - 3_ _,) ¢=/' +

(44.15)

We shall determine the values of @ and ix by appropriate choice from the minimum

condition of stress, i.e., we shall determine the stress for the most unsatisfactory

form of the initial irregularity. In this formulation, the solution of the system
(44.14), (44.15) can be obtained as follows:

a) we take values of 0 and It for a particular value of _o;

b) we calculate ¢p . , ¢p from (44 13) and introduce it in (44.14) and
lZ " " 7(44.15); thus we obtain ¢ as a function of _0 f and H0 and a relation between

the last two;

c) we construct curves ,*(() for a series of values of H;

d) keeping 0 fixed° we carry out analogous calculations for other values of F;

e) from the obtained family of curves _'(_) we choose that curve which
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definesthesmallestof the quantities z* : z_, where _ is the value of the stress
parameter according to the linear theory,

Thus, for a given value of 0 we select the corresponding value of H and the

curve :C!. To reduce the calculations, the values of _ and _, corresponding to

a given H, may be taken in the first approximatio_ from the linear theory. Calcu-

lations show that such a solution leads to an insignificant error.

The curves A(_), obtained in this way, have a form similar to those given in

Figure 29 for H = 400.

i

JlO

8J

o i) O_7

02 O_ 05 O_ _Q

Figure 29

As can be seen from the graphs, at a certain value of load--which we shall

call critical--there is a sharp increase in the deflection without noticeable

increase in load. The corresponding values of the initial deflection w 0, at which

one reaches the critical load, are given in Table IK.

Table IX

_o H=46.6 to

0.07 0.115 0.05 4

014 0.544

H= 95.4

0.085

_0

0.067

H= 400

0.17

t0

0.015

H=2080

0.074

0.101 0.I 0.267 0.03 O.14T

0.384 0.15 0.435 0.06 0.306

Figure 30 gives a comparison of the critical values of A with the values of the

quantities Aa found from (38.17) in the linear theo "y, and with the experimental data

given in the work of Donnell /IX. 10/.

From the graph it is obvious that almost all the experimental points lie between
the theoretical curves constructed for the values cf w ° = 0 and w ° = 0.4t.

The critical values of the quantity A for shells whose middle surface has an

initial irregularity W0max < 0.25t, can be determin_ d from the formula

A= A.,(l - o.ow°,/t_,
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which,withanerrorof2%,holdsalsofor

(_2./t) = 0.4.
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Figure 30

We shall further assume that the middle surface has a symmetrical irregularity of

the form

. 2_c I n.y
zlP = fot sln -l- sin_De '

(44.16)

Under the action of a load such an irregularity will increase, retaining a symmetri-

cal form until this equilibrium form becomes unstable and the appearance of a new

unsymmetrical form of equilibrium becomes likely, To determine the critical

load corresponding to this point, we shall represent the deflection by the expres-

sion

= fit sin _' sin _ny' _t_f_ sin._ __' sin2 n),' (44.17)
1 R 1 2,9"

We consider that fl is an infinitesimal quantity, and therefore in the expression for

the total energy we omit all terms containing fl in powers higher than the second•

Thus, analogously to the preceding, we obtain the relations

_", _*)+ (44.18)
p_

-b _o (_',-I- 1-°) -I- _;,

9 _ 3

+ "n {4,_o{_,;o_, -t- ,,P,}-- _ ,_ ,_ - -4 _o (_: -I- _) -1-

5 I { ??] = O,;+;,
where

: f_tn'-/R, _o = Atn_tR. (44.20)
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The critical load is determined from (44.18) and (4+.19) in the same way as from the

system (44.14) and (44.15). The difference conslst_ only in that here one does not

conltruct every curve :+(T,),but _ is determined immediately. Here, from the

values of t* found for a given 0, we select the one :or which the ratio r*/x*_
takes the minimal value.

Calculations show that a symmetrical irregularity has little effect on the value

of the critical load. For example, for the amplitude of the irregularity 0.5t(_]0 = 0.4),
the critical value of A is reduced by 9% for H = 95.4, and for H = 2.080 with an

amplitude _2t by 9%.

It is probable that, among the various irregularities which occur in actual

shells, there also exist those which can lower the apparent strength even more than
the irregularities considered above.

Here we have confined ourselves to an exposition of the problem as given in

the article of N.I. Krivesheev /X. 19/.

In the article of Nash /X. 15/ it is mentioned that the problem under considera-

tion had been tackled in the Doctor's thesis of Loo, an excerpt of which has recently
been published /X. 16/. Judging from this short exposition, the form of deflection

taken by Loo is+ in our notation of S§ 38, 44,

_v= at [stn n(s+ _x) _ --1-_(cos 2,x

wlth an initial irregularity

W_ _ 'wao/a.

Varying the total energy of the shell with respect to deflection parameters a and d,

Loo obtains two algebraic equations in T, a, d, n, and ¥, where ¥ is the tangent of

the angle of inclination of the wave. In what follows, the author assumes that

rn _ ''q_-_= 0722( "Rt'_P'.\_-;-/ , T -- 1.732(-_) t_4
(44.21)

instead of looking for the values of n and ¥ which correspond to the most unsatisfact-
ory form of w °.

The values of m and "f, close to the quantities taken by Loo, were found by

Donnell for sufficiently long shells by neglecting ¥2 in comparison with unity. Loo

makes use of (44.21) also for short shells, as a res_lt of which he obtains excessive-

ly large values for the upper critical stress in comparison with DonnelPs solution,

which in turn gives somewhat excessive values of x t , as shown in § 38.

Having thus simplified the problem Loo derive s after some calculations the

approximate relation:

------- 1.14 a,°
(44.22)

where x_ is the critical stress according to the linear theory.

Further, there is an attempt (following Donne]l) to relate a 0 with the most

probable form of buckling of shells, assuming that
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Finally, choosing for U 0 the arbitrary value U 0 = 5 • 10 --5, Loo obtains the required

relation.

In view of the above, we believe that Loo's "solutlon" given here should be

taken with caution.
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§ 45. Non- Linear Theory of the Edge Effe =t in a Cylindrical Shell.

The Influence of an Initial Edge Deformation upon the

Stability of a Shell under Axial Compression

We shall consider a shell having initial deviations w ° from the cylindrical sur-

face and corresponding initial stresses and moments T_ .... , M o. The additional

deflection due to the applied load will be denoted by w, and the function of the addition-

ILl stresses by _.

Let

where w b, T b .... are quantities determined from =he membrane theory. For a

cylindrical shell referred to the lines of curvature, in equations (20. 19) and (20. 21 )

one should set

dx z _xx ' bx01 0x_ '

Oaz 0_ , ----, 1 ,

(45.2)

where _p 0 and w 0 satisfy the equations (20.8) and (2),I0):

l =0,a_ OxI t-2 (45.3)

Besides, neglecting the changes in curvature of the membrane deflection, we shall

set @aw/O_ _0_1r'/0_¢ _.

Thus, we shall obtain the following equations for the determination of q_k and

w k

- 2(rf,_+ T,_--_; -- 2(r,_,+ r,,"+ r:_) --_--+0=="T;/z--

(45.5)
r;)_-, -(r_+r_+ _, a.,

+ _ /_ aj= a_ as' _-_j -- • (45.6)

Let the moment part of the deformation due t) the load and the initial deform-

ation be characterized by quantities which do not d_ pend on s, or else change very

slowly with s, but change rapidly as functions of x. Then
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Here the equations (45. 3) and (45.4) can be replaced by the approximate equations

-- Etk _'--_ = O. D 4,___+ _ _o : o.
dx4 d._2 d_'J dxl

Thus, setting

we obtain the equations

x = _L/2, 16m' -= L" 3(V-3-(-i---Z-_-#)/e'R2, (45.7)

_---= r,O=zt_wo, _+4_,_=0. (45.8)fix=

Analogously we find

a_= TI _ Etlt_", TLb - T,
ax--T= "_- (45. 9)

--;+ 4J_,_-_- +_-)__,_,=o. 4_'-_= r,_ (45. lO)

The middle term of the latter equation characterizes the influence of the membrane

part of the deformation on the edge effect. Its presence shows that the superposi-
tion of the solutions of the membrane theory and the usual linear theory of the edge

effect is not admlssable in the given case in view of the nonlinearity of the original

equations.

For example, let the shell be of the shape of an ideal circular cylinder before

clamping the skin to the transverse ribs. Let the inner radius of the skin exceed
the outer radius of the transverse rib by the quantity f°t. We shall assume that

when the ends of the skin are clamped to the transverse ribs (for example, by means

of closely spaced rivets) this gap is reduced, due to which the skin gets an initial

symmetric deflection w ° equal to f°t at the transverse ribs, and corresponding
initial stresses, We shall determine the influence of this initial deformation on the

deformed state of the shell under the action of compressive axial stresses

T = const.

Of course, the initial deflection considered is an edge effect. From (45. 8)

we find for it the expression

w ° = A, ch mECOS _ + B, sh u,_s in _,

where A_ and B _ are constants determined by the initial conditions

u2_=-fot, d_/d_,=O for _==+I. (45. 11)

If the shell is not very short, then ch®_shw. In the zone of the edge _ = 1 we can

also set sh_-_cho_ Thus, after slight calculations, we obtain the expression

of w ° for this portion of the shell, satisfying the boundary conditions (45. 11):

wo=__/_tch_E[sino(i--U+coso(l -_,)Vch _- (45.12)

An analogous expression for the second half of the shell is obtained by replacing

by--_ in (45.12}.

Further, for _ ) 0 we find the approximate expression for the integral of the

equation (45.10)

w _ = ch =_(A= cos I_i+ B= sin _) -- t#,

259



where

For _ = I the conditions w = 0, dw/d _ = 0 have to be satisfied. Calculating the
corresponding A2 and B 2 we obtain

o ch.._ L_ (I --_)I--_. (45. 14)

Since

r,_- o. _, ,,P= - ,_.

r,-_ TP_ Etwb/,R._b ,TR/Ft. (45.15)

We determine the annular stress from (45.9). We set

T = ,qEtsk, (45.18)

where I] is a numerical factor. For the lower critical stress it is approximately

equal to 0.19. Introducing this expression into (45. i0) and taking (45.7) into con-
sideration* we find

_,.- _ VT(t--,,) (4s. 17)

According to (45.8), (45. 9), and (45.14) the total circumferential stress is

¢h._ f, . --e)]. (45.18)_+ _- - Etk (t/. + _,) c-_-[._-s,np(l - e)-I-cospO

In the linear theory of the edge effect

T_-I- T_"_-- EtS_ cos ,_[sln ,,(I --E)_cos,(l --_)]:chm.

The difference between these values is large unless 2 is small.

We shall calculate the mean circumferentiR1 stress along the shell length:
!

(_+ _),=/ (r_ + r_)&,:,-2etk(:/o +r#.),/(,, +p}.

Denoting by Pc the mean pressure given by (45.13) we find

(_+ _), =o,_= _t_ (t/, + ,,') _VV_-_-_,/.. (45.10)

In solving the problem one can assume, as a first approximation, that a non-

uniform pressure of mean density Pc has the sabre effect on the shell stability as a

uniformly distributed pressure pc, as in both ca_ es, in the anticipated form of buck-

ling, it is essential that one ha]f-wave be formed along the shell length.

Consequently, if Pc_Pk, where Pk is the critical external pressure given by
(36.22), the shell can lose its stability under the combined action of the axial com-

pression T and the pressure referred to, arising as a result of the initial deforma-
tion.

According to formulas (45.15) and (45.16), w b = vqt. Equating Pc and Pk and

using (36.17), we shall obtain from (45.19) and (:_6.22) equations for the determina-

tion of the critical stress:
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where
= I._ :{(I-_,)'_{l- I.si(l- _)_]},

(45.20)

(45.21)

_on8.

For given f0 and {} one can find )_ and the critical value of q from these equa-

Let, for example, _1 = 0.19, ,,_ ffi 10, or {} = 0.0464. From equations (45.20)
and (45.21)we find _= 4.1, f°_0.51.

Thus, in the case under consideration, with f _ 0.51 the shell loses stability

when the axial compressive stress reaches its lower critical value.

The above considerations can explain, in the relevant cases, the phenomenon

of premature lose of stability of actual cylindrical shells having an initial symmetric-

al deformation of the edge type.
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Chapter XI

LARGE DEFLECTIONS OF SHALIA)W CYLINDRICAL STRIPS

S 46. The Stability and Large Deflections of a Long Cylindrical Plate

under a Uniformly Distributed Transverse Load*

We shall consider, within the limits of the theory of shallow shells, the exact

solution of the problem of equilibrium of a circular cylindrical plate under the action

of an external normal pressure p = const>0. The results thus obtained will apply
to shallow beams if one replaces the flexural rigidity D = Et3/12(l - v 2) by EI.

For very long plates with uniform boundary conditions along the length all the

quantities characterizing the deformation depend only on the coordinate s. For the
sake of brevity we shall introduce simpler notations as follows instead of those of

S 35:

I

T 2 = T is the membrane stress along the arc, b is the strip width, _. = 2s/b,
I = v is the displacement along the tangent to las arc before deformation, w I = wu 2

is the normal displacement, w 0 is the initial ir:'egularity.

Let a dot over a letter denote differentiation with respect to _.

According to equation (35. 2)

T = const ---- - c_ = Etr/(l- v 2)
(46. 1 )

After introducing the dimensionless quantities

-- _D-' 2 F D ' W=-_-, (46. 2)

we shall obtain from (35.1) and (35.3) the equations

4 i W__j - _'Wo. (46.4)--_ W-tk*' = V+ W+_-

The retaining of the quadratic term in the expre_ slon (46.4) will allow us to consider,

in the following, larger displacements as well.

If the edges are hinged, one has to satisfy the conditions:

(46.5)
w=0, w_0, v=0 fol _±1.

* See article /XI. 1/. For a sinusoidal beam tl.is question has been

investigated in detail in /XI. 2/.
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The general solution of the equation (46.3) for w 0 = 0 has the form

bt2 _*
(46.6)

Determining c2, c3, c4, c 5 from the boundary conditions (46.5), we obtain

W=Q( cos._ + _" , 12) q (46.7)

Introducing this expression in (46.4), integrating and utilizing the boundary condi-

tions for v, we shall obtain a relation between the dimensionless parameter of the

external load q and the dimensionless parameter of the compressive stress _ in
the form

4 ! 2 -,,. .6.6,

He re

1 _tgF + 0,5 tgt_ +2,5 tgF l l (46.9)

We shall denote the deflection parameter at the vertex of the panel vertex by _.

According to (46.4)

r = Q/l --_cos.__ (46.10)

The relations (46.8) and (46.10) allow one to investigate the behavior of an infinitely

long shallow panel with hinged edges. For any given value of the curvature parameter

k*, the critical values of the parameter of the external load ql and q2 (pressures of

snapping and of collapse) can be found from (46. 8), from (46. i0) we can obtain the

corresponding values of the deflection parameter _1, _2 at the strip vertices.

When the curvature parameter k* is sufficiently large, by neglecting in equation

(46.8) the term 4 _2/3k.2 we shall obtain

Q=0, (46.ii)

or

! A,Q = B,. (46.12)
2

The relation (46.1 I) corresponds to the membrane state of the strip before the

snapping. In fact, from (46. II) and (46.2) we have cl = pR.

The equation (46. 12) describes the behavior of the strip after snapping. As

the calculations show, for k*>70 one may use the equations (46. ii) and (48. 12)

which do not depend on k* instead of (46. 8).

For the following investigation we shall write equation (46. 8) in the form

Q == (B, --4-__):A_ ; _,--B,: --_ A,t*t/k*L (46.13)

From (46. 8) and (46. 9) it is seen that for _ 3= the quantity Q hasF=_, 2 ....

multiple roots equal to zero. The corresponding values of the pressure
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parameter will be: q _-- . However, for s given k* only those values of the
parameter _ for which 6_;) _ a real meaning.

According to (46.13) to every given _ correspond two values of Q, and conse-

uently0 two values of q. One of these values of q corresponds to the state before

the buckling. Depending on the value of the curvature parameter k* two cases can

OCCUr:

i. A 1 = O with _,r./2. Then there is only one multiple root, corresponding

to the value of p obtained from the condition A l = 0. In that case, the snapping

phenomenon does not exist, and the curves of (46.8) and (46.10), which, for brevity,

will be denoted by F(q, _) = 00 _(_ _) -- 00 will have the forms sllown in Figure 31.

2. A 1 = 0 with ._>_./_. In that case there are two multiple roots, one of
which corresponds to the value _ = _/2, and the second to the value obtained from

the condition A I = 0.

k* <: 4.45 _ '

q2 _' ql

I

2

/

-O -_ -_.

Figure 31

In this case the dependence curves F(q° _) = 0, _(q, _,)= 0, have the forms

shown in Figure 32. The strip loses its stability _,ith snapping.

Figure 32

The maximum of the compressive stress parameter p which is possible in

strips with hinged edges will be the one for which A 1 _ 0 when k*_ e_.

As A 1 > 0 always holds, the value of _ found irom the equation B 1 = 0 will be
the greatest. It is ?_4.685.

The smallest value of k* for which snapping :)ccurs is determined by the con-

dition _z_0 at _-*n/2. Hence, k*_4.45.

264



From Figure 32 it is apparent that snapping is possible only when the compres-

sion parameter _ becomes greater than x/2. The value of _ = x/2 corresponds to

the Eulerian compressive force for a strip of length b with hinged ends. As a matter
of fact. from (46.2), for _--_/2, cl--_2D/b z_ T, .

Determining the critical values of ql and qa from {46. 13) is equivalent to de-

termining the maxima and minima of the curve F(q, p ) = 0. Owing to the tedious

calculations involved in expressing q in terms of p, we find the quantities ql and

q2 for various values of k* by constructing curves through the points. The quantities
Pt and Pz thus obtained may be expressed as

4D
PJ _a, (/_*) _-_, p2=a_.(k*) _- (46. 14)Rb2"

So far we have confined ourselves to the consideration of only the symmetric
form of strip buckling, whereas the general expression (46.6) for the deflection

function also contains an asymmetrical term. For hinged rectilinear edges the
boundary conditions (46.5) have to be satisfied, from which it follows that for all

p_w, c_ = c 4 = 0, and the symmetric form of the deflection is the only possible

one. For _, = _, along with the symmetrical form of the deflection, an asymmetrical
form also becomes possible. This testifies to the fact that parts of the curves

F(q, _)=Q. ¢(q, L)_0 (46. 15)

correspond, for the values p._K, to unstable states of equilibrium, and when de-

termining the loading capacity of the strip they should be dropped.

Asymmetrical buckling appears only in strips whose curvature parameters
satisfy the condition as _> 0 for _ _ r, Calculations give the value k* > 9.04.

Thus, the process of buckling of a strip with a large curvature parameter is

described by the solution obtained in the following way. Initially, with increase of

the load, the panel deflections are symmetrical; when the compressive stress para-

meter p reaches the value _, an asymmetrical buckling occurs (by jump) to the

equilibrium state which, for large deflections, will again by symmetrical.

Taking into account the asymmetrical form of buckling, we obtain a table for

the values of (11 and a 2 for hinged edges.

Table X

30 50 70 ]

9.55 9 74 9.80 I 9,87

2.47 --0.75 --3.97 --44_ --4..62 1--469 --4.75

Let the boundary conditions of the problem have the form

w=-_O; _'=±,o; v=±_._-_'- fort=+ia*_ -- (46. 16)

The coefficients 5, y, and _ characterize the flexibility of the supports along the

normal, with respect to rotation and in the tangent plane respectively.
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Applyingthe boundary conditions (46. 16), (46.4), and (46.6), we find

w=Q[ ('÷_)_'_;_;-_ _'2- 0 -_),o,,_, 2'(l +_)], (46.17)

I--AQI--BQnU C---O, (46. 18)
2

where

2 _nz i_ -- _nl A _t '

B= 14-, 2+--_--i--_-]ctg_;C=_ _ (14-_). (46. 19)
_z 6 _, 3 .t"t" --

These relaticns allow us to consider the influence of the various deviations from the

conditions of rigid and hinged edges on the carrying capacity of the strip. As an

i11ustration, let us see this for a strip with a curxature parameter k* = 40.

A. Let the supports be flexible in the normal direction. In that case, _=T=0,

a¢:0.

Let us find the minimum of the ab3olute val_e of _ for which snapping no long-

er occurs. This may be determined with sufficie _t accuracy from the condition

BZ--IAC_O, (46.20)

if one sets_ = 3.2. It is _---7.91. Here, if t = l mm, then w(s = _ b/2) = 0.415 am,

and the value of the load parameter of the buckling drops from q1(_ = 0) = 19.14 to

qI(8 =--7.91)_ n 2.

Hence it can be seen that the loading capacity of the strip decreases when, un-

der load, the supports undergo an additional dispJacement from the center of gravity.

H. Let the supports be flexible in the tangent plane. In that case, _ = _" = 0

p#0.

The coefficient _ can take various values d,_pending on the degree of flexibility

of the supports. We shall find the value of _ for _hich the strip with k* = 40 no

longer snaps. This value of _ will be obtained w_th sufficient accuracy from equation

(46.20) with_ = 3.2. It is _= 10.77.

2
Consequently, at _-: 11 the buckling load becomes q, = _, instead of 19.14.

Since in shallow strips and beams there is a considerable thrust even for small ex-

ternal pressures, then, due to the flexibility of tte supports in the tangent plane, the

buckling load can turn out to be less than half of i:s value for the case of rigid fasten-

ing.

C. Let the supports be flexible with respect to rotation. In that case, 6=p=O,
T#0.

Calculations show that for "y = -1.0536 the panel snapping does not occur and the

loading capacity is reduced from ql = 19.14 to ql -_ n2.

Thus, the imp3ssibility of realizing ideal I_)undary conditions of hinged or

rigid fastening in experiment and in actual struct rues can be one of the reasons for
the fact that the observed critical loads sometimt s turn out to be much smaller than

the theoretical ones.
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Another reason for this state of affairs is the influence o.f the initial irregulari-

ties on the behavior of the strip.

Our analysis of the exact solution of the equilibrium equation for the rigid fast-

ening of the panel edges having symmetrical irregularities of the form _ =- atcas,_/'2

and w0 _ -- at (1 -_-cos _) or an asymmetrical irregularity of the form w0 = --at sin d/2

shows that for a = 1 such irregularities reduce the snap pressure by 10-30%, while

- with increasing k* the influence of the irregularities decreases. At the same time,

these irregularities increase somewhat the collapse pressure Pl-

Of considerably greater influence is an antisymmetric irregularity of the form

W 0 = -(_t sinnn_ (46.21)

In Table XI are given the results of calculations of the corresponding pressure

parameter of the snapping ql I for fl = 1, and also, for comparison, the values of

ql ° for _= 0.

k" 40

q0 19. _6

qt _(n _ I) : q_0 0.54

q,_(n :- 2) 95

q_: in - 2_: q_ 0.49

6O

19.7B

I2.18

0.615

1107

O,b9

80 I00

12 68 !380

0.635 O eD

12.27 13.07

0.61 0,65

Table XI

Calculations show that for n>2, the quantity ql begins to increase rapidly, ap-

proaching q 0. This indicates that the antisymmetrical irregularity is less danger-

ous for a high frequency (n = 3; 4; 5) than for a low frequency (n = 1; 2).

The results of calculating q2 for certain values of k* for the irregularities

(46. 21) with n = 1 and a= 1 are given in Table XII.

Table XII

i I I 41, I
i 825i ,.,2 i

From Table XII it can be seen that the antisymmetrical irregularity increases

the lower critical load, and its influence on q2 turns out to be just as strong as on

ql. Therefore, yon Karman's assertion about the weak influence of initial imperfec-

tions of shape on the value of the lower critical load, expressed by him in ]XL 3], is

erroneous. An antisymmetrical irregularity can, by lowering the upper critical

load and raising the lower one, eliminate the possibility of snapping for a certain

amplitude.
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547. The Convergence of Galerkin's Method for the Solution of the Problem of $46

In view of the fact that an exact solution of non-linear problems of the theory

of shells is possible only in very rare cases_ it i_ interesting to clarify the effective-

ness of using approximate methods for the solution of such problems by comparing

the approximate solutions with the exact ones. We shad1 carry out this comparison

on the example of the problem of §46, whose approximate solution will be found by
Galerkin's m._thod /XI. 4/. Let

m_t1P'_.. ¢,.cos --_-, m_l, 8 .....
IWtl

(47.1)

where _I' 42 .... are arbitrary parameters, yet to be determined.

Of course, the boundary conditions (46.5} for W are satisfied here.

Introducing (47.1) in equation (46.4), weob:ainV, and setting V = 0 for E-_-__.I,

we obtain the relation

_,.=--W- i (- l) , me.)', (47.2)

where

m_l, 3, 5, 7.... ; I_2 for m-_l, 5, 9 .... ;
1_I for Fn==3, 7, II .....

Introducing (47.1) in equation (48.3) and integrating the latter by Galerkin's method

we shall obtain an infinite system of equations:

- <.(G-)'+,,'[<- +(G)'<.,]=c-,y-'_

where m and 1 take the same values as in (47.2). The relations (47.2), (47.3) allow

one to determine the symmetric deformation oY the strip with any degree of accuracy.

In (46.3) and (46._4}_substituting the quantities W + WH, V + VH, and _z,_-_

for W, V, and/_2, where W_, V H, and _ are infinitesimai increments, we obtain

the equations of neutral equilibrium

W'. +_li_. +ihP(li'--l)_0, (47.4)

-- 4_a13k*'_ tl. + IF. 7u t_zW., (47.51

As is well known, for very shallow strip_ the sm.Rllest value of the critical

load corresponds to the loss of stability in asymmetrical form with the formation of

two half-waves; therefore we set

iV. --r_ sind. (47.6)

Substituting in (47.5), we obtain V H , and setting '/14= 0 for t = _-_1, we obtain: _z-- 0.

Here, from equation (47,4) itfollows that 8zR,P, i.e.. the asymmetric form
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of buckling appears when _ becomes equal to _. The exact solution gives us

the same value for F.

Substituting p_= in the equations (47.2) and (47.3) one can determine the cri-

tics] values of the deflection parameter _ml , _m2 and the corresponding values

Of the load parameter ql, q2 for various k* (see Table XILI).

Table XIII

W=

q= 9,085

ql --4,15

qL 9,810

70 --

• ! -- 4, B73

= r,Lcos ._ +
3_

_zcos-_

9.08

S.$06

-- ¢.e98

_act

solution

g $00

-- 4.630

As can be seen from the table, the solution by Galerkin's method almost coin-

cides, in the second approximation, with the exact solution, whereas the first approxi-

mation gives a larger value for qz and a smaller value for q2 •

For strips with rigidly fixed edges we take the expression for the deflection in
the form of the series

IV= _. r,,,[[ +(- 1)"-1 cos n_ l, n = 1, 2, . (47.7)

Proceeding analogously to the above, we shall obtain

Let

-- rN -- -- _ a _n ,
• _-- 4 16 z_

_-1 N--;

q

(47.8)

(47.9)

'_T/._C, sin =fCOS -- • 147.101

According to (47.5) we again obtain _t,===0,

by the Galerldn method, we find p=_'20,23.
_= _=, 20.25.

whereupon, integrating equation (47.4)

The exact solution gives the value of

Setting p.=-._.20.23 in equations (47.8) and (47. g), we obtain relations for the

determination of the critical values of the deflection parameters ¢._, _=

the corresponding values of the load parameter q p q2- Calculations for

k* = 100 yield:

l-e apI_o_umation ql _ 20,09; q=: -- 0,38;

2-e q1_2008; q== 3,fl7;

3-e qL : 20.08; ql = 4.04;

4..e qt_),08; q2: 4,13;
Exact eOlt_tio:z qt = 20.(_; q2= 4.22.
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Thus, in the case of fixed edges as welt, the second approximation coincides,

within the limits of accuracy of the calculations, with the exact solution for ql, and

the fourth approximation gives almost the exact value of qz" This case illustrates

the process of approximating the exact value _f q2 from below in a particularly con-

venient way.

The calculations listed show that the application of the Galerkin method enables

one to find with sufficient accuracy the upper critical load as well as the lower one. _

For the determination of the lower critical lold one requires a higher approximation.

We do not have a formal proof of the convergence of Galerkin's method for the

solution of non-linear problems. However, it can be explained why, in using this

method, we approach monotonically the real value of the upper critical load from

above , and the real value of the lower critical load from below. As a matter of fact,

when the condition of compatibility is satisfied, Galerkin's method follows from the

principle of virtual displacements. Accordin._,_ to this, by taking an increased num-

ber of terms from the series which approxim;_tes the deflection, we increase the

number of degrees of freedom of the system. This facilitates the snapping of the

strip, as well as the return collapse. Here i" is necessary to note that in our investi-

gation we assume the completeness of the sys :era of approximating functions.

The essential nature of that condition is confirmed by actual experience in

solving non-linear problems. For example, in determining the lower critical value

of the axial compressive stress for a complete cylindrical shell (works /X. 41/ and

the same form of deflection was taken as was defined by the formulas (40.5) and

(40.6). But the first of these works an additional constraint was imposed on the

possible amplitudes by the assumption that gz = g3. Owing to this, the complete

system of approximating functions

_0, D cos mex cos nks. g: cos !mkx, g_ cos 2nks ....

was turned into an incomplete system of functions

go, _'_ cos mkx cos nks, g2(cos '. mkx-._ cos 2nks) .....

which led to an increased value (by 7%) for the lower critical stress (40. 20), instead

of the value (40.22), found by Kempner by var:'ing the total energy with respect to

all the parameters go, gl, g2, and g3.

It should also be noted that the successive approximations to the actual expres-

sion for the deflection, obtained by including i_ the expression of the approximating

function new terms of the series of the comple e system of functions withthe corres-

ponding new deflection parameters, give monot¢ nically varying approximations to the

lower critical stress only when the chosen defl__ction function for the first approxima-

tion characterizes sufficiently well the actual _hape of the deformation. For example,

our calculations have shown that if in solving the problem of § 46 one approximates

the deflection function in the first approximation by a sine-form with three half-

waves along the strip width, then the pressure vs. deflection graph obtained is situ-

ated much higher than the actual graph, and wi_ increasing deflection the pressure

increases monotonically. Later on, wlth the i*troduction in the expression for de-

flection of terms which give sine-form with tw( and one half-waves along the strip

width, one begins to obtain graphs with lower sad upper extremum points, and then,

by passing to the consideration of a sine-form vith 4, 5.... ha]f-waves, the extrem-

urn points from above and from below, corresp)nding to the upper and the lower

critical value of pressure, begin to approach e_ch other monotonically.
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§48. CylindricalStripSupportedonRibs,Flexiblein theTangentPlane,
undertheActionofNormalPressure

Weshall consider the problem of determining the large deflections of a rec-

tangular cylindrical strip, freely supported at the edges on ribs ]XI.6]. Here it iE

assumed that the transverse sections of these ribs have a very large moment of in-

ertia about the axis passing through the center of gravity of the section parallel to

the plate surface, and a very small one about the axis perpendicular to the plate sur-

face. We shall therefore consider that the ribs do not allow the plate edges to be

displaced in the direction perpendicular to its surface, but do not at all hinder dis-

placements in directions tangential to its surface and perpendicular to the rib.

It is also assumed that the ribs are inextenstble. For the longitudinal ribs of

the strip, at s = 0 and s = b, the following boundary conditions should be directly
satisfied

,,==2L_(22____, o'*'_=o, 7:= _'_=o. (48.1)
£t k 0s_ _x_ / c)jt)

The first of these conditions signifies that the strip next to the rib, as well as

the rib itself, does not expand in the direction of the rib. The second condition signi-

fies that the rib does not resist bending in the direction tangential to the strip.

From the preceding two equations it follows that with s = 0 and s = b

T, = _- = o. (48.2)

Analogously, one can obtain the boundary conditions satisfied by the function

in the neighborhood of the transverse ribs

O_._j_v) =0%-% _0 for x=O. x=a. (48.3)
_x* ds*

In view of the free support of the strip on the ribs, further conditions have to

be satisfied which ensure the absence of bending moments at the strip edges:

_'_ =0 for s=0 s=b. |48.4)
_v -- 8s----_

We shall seek the approximation to the deflection function in the form

N N

....... ._= _._., _,.,,= s,n -- st. -- 148.5)
b

_t jm l

It is obvious that every term of that series satisfies the conditions (48.4). Intro

ducing this expression for w into the equation (40.3) we shall obtain
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-V:# ! +

mn#a

+ e, N_ ,- o,__
7Za _ _.., .

mn

(48.6)

We shall solve this equation by the Four.er method. We shall utilize the re-

presentation in the form of a double Fourier series of the function

O,,e,,,,. _'_,_ _... 0_,, _,._ As_, w,, (48.7)-_-" -#i_- - _ " _ =
a¢

and its odd continuation beyond the region O_x_a, O_s_b, where k, 1 - 1o 2, 3 ....

,-,.,o,..,,.,o,v,, (48.8)ld _ -- n_

Amnpq JJ l OJc' --_S' -- 0_, " "

Here and in what follows the integrals are taken over the entire surface of the strip.

Introducing (48. 7) in (48.6) we obtain

m_pq_l

Et _ C /"m_" "-

mn

(48.9)

We shall seek the solution of this equation in t_e form of the series

= _ _. ak,m,,, (48.10)
k t

each of whose terms satisfies the boundary cor_ditions (48.1) and (48.3), and the co-

efficients aid satisfy the system of equations

co .... R \ a l
JC_pq

(48.11)

Here the quantities C , Cmn , Ckl are zero if at least one of the indices

k ..... q exceeds N. Further, introducing the expressions (48.5) and (48. 10) in

(40.4), multiplying both members of the obtain,:d equation by wn and integrating

over the entire surface of the strip, we arrive, after some simple calculations, at

the system of equations:

? ,__rfro.=,,o....._o c,,+ o,.
•_" (48.121

• o"z,x,, O".=m,, 2 °'_," _"--_],,_XaS+-t- 0,---'7-" Ox_ Oxds

I _r s 4
.-_ ...-__(--'_ • ..... f [ p=r, dxd$ s=l, 2 ..... IV.

x\ a/ _.),/ ' *'

Integrating by parts and taking into accom_t that at the strip edges the func-

tions Wrs are zero, we have
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J axl

4- ^ c)Sa'_n c_,_ O_-w_ d_., )= _ _¢0,, (0_,,,1 _,,, _ . -- " dxds;

y y _. '_"---.-_-*w,,dxds=o,,Ox a

Consequently,

= r r /O=_'_n 02w" 3V .... 9
JJ_&t_," _s_ Ox' Ox" 0; Oxas OxOa" /

Introducing the latter and the expressions (48.11) in (48,12), we obtain for the

coefficients Crs the system of equations

kl (_la)" Ct=C=, E-t (..ria * C_
4kt B,_mn

aOR ((knfiz)' + (t,qO?l' R"=I(_/*P + (,,=laPP
*_" (48.13)

abR • [(_r la) _ + ('_=/1')=1= pw,, dxds

(r, s=l, 2..... N).

In order to obtain simpler formulas we shall consider the first approximation

to the solution, when N = 1. In that case. assuming that the pressure is distributed

uniformly over the whole surface of the strip, after some simple calculations and

the introduction of the notations

k*: b"/Rt, H = b:/8R, "t _ b=/a =, (48.14)

we find the following dependence of the pressure on the deflection at the center of

the strip:

P = "-_-"0 +_')'

__ [1 _}_ _,_ , 1 _.[_i.).,]._.}. (48.15)

He re

_'_;_' ()-_'7--_+7"_-_-" (48.16)A (T)*= (T + I) _

We give the values of this quantity for some values of the elongation parameter

of the strip:

I

b/a = 1 0.75 0.5 [ 0.3

A = 0.46 0.47 0.49 0.5
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To solve the problem in the second appr)ximation we shall take the deflection
function in the form

--- -- 3n£_,=Ctlsin _x sin '_'-_-}- C,s ;in .x sin--. (48.17)
a b a O

Here, from (48.13) we find two equatiom_ for the determination of the deflection

coefficients C Ii and C1_ . The coefficients of :hess equations contain the quantities -kl
Amnm, calculated from (48. 8), and also the quantities:

....., A,..p+ -{- = B'*,.v,'4"pCma _,v.l'n'_

8 I+'ranpq[2 (,._q_ + n_f) -- (k: -- m_ -- p_) (t _ -- n=-- <l_l,:a
{(kI - m) -- t,1)_ - 4m_,v_][(P -- r9 -- q2)__ 4n_tqt]ab'

k, [:1, 3 .... ; m, n, p, q=l or 3.

(48.18)

Utilizing the notation (48.14) and introducing th ,_new notations

= Ct:/t, _l+_ Cti/Ct_, p+ _pb'/Ett (48.19)

we shall obtain a system of two cubic equations in _ and _ 13:

+,'co,.+ ÷,(o,,÷o., +,
t48.2o)

_,(_,, + =,,¢,,+ o,,-,_+ =,,q]_+ c,(.,, + _,,'.,,÷ °:,L9 _"-T-+

+ _ (a83 + k,',_.--_-) _,, == -- (),5404p*. (48.21)

The values of the coefficients Oik for some ¥ are listed in Table XAV*.

39.35 --135.7 487 - 75.29 51.92 --8,%02 172,9 ]223_0

12 14.92 -- 38.t0 1_'_3 --48.72 ;_2 (30 --3t 91 5_+28 4%56,
2,497 -- a.20 - 10,63 5 120| -- 5.052 8.643 13.9_

0,30.5 0.472 3:832-- 1.256 - 2614 0 872_--0,859 _462 t06_

- to +1 "°1"°!'° °.1 ,t

II t2 40.96 1032 - 43,01 j 345,8 _,35 1507 6.059

l 16 388 -- 15.96 112,6 3.84 892 0.64
0.5 2.56 77.34 -- 2.526} 17.29 0.2t_,05 753_ 0,0467

0.3 0.436 I 18.8l -- 0.430[ 2,924 0.0376 737 0.00627

Table XIV

Eliminating p* from equations (48.20) and (48.21) we find a quadratic equation

in _, whose coefficients are polynomials of at frost the third degree in _1_

Taking various values of _13 and determi].ing the corresponding values of

from (48.21), one can construct a graph of th- change of the pressure parameter

p*.

Example. Let y = b2/a 2 = 1/4.

* See article ]IX.8/, which has a misprint in formula (3.2).
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w

First approximation

according to /XI. 7/...

From (48.15) ..........

From /XI. 7/ ..........

From (48.15) ..........

From (48.21) ..........

The values of rel ative deflection _ 1°, _o at the center of the plate, the upper

critical pressure parameter p_ and of the lower critical pressure parameter p*2 '

calculated from the first approximation formula in M.A. Kolttmov's article /XI. 7/

and from our formula, are given in Table XV.

Table XV

I [ [a/ k* ;f _20 p_ P2*

4o 2 124 [ s.380f 44 s j 20.2
40 2.3o E 350 / 45.8 ] 376
80 3.41 11.64 [ 256 ] -12780 3.87j 9.93282 54
8o 3.59j 9.92 i 88J |

As can be seen, the results calculated according to the formula of article

/XI. 7/ and from (48. 15) differ considerably. Both of these formulas were derived

taking one and the same form of the deflection for the same boundary conditions, but

the first of them, in contradistinction to the second, was obtained by integrating the

conditions of compatibility by Galerkinfs method. Let us note that in the example

considered, the difference in the value of the upper critical pressure, determined

from these formulas, is not large. The collapse pressure (and also the strip deform-

ation after the snapping)is determined incorrectly, by Koltunov's method in the first

approximation. Hence it follows that in using the Bubnov-Galerkin method for the

integration of the equations of compatibility, it is necessary to determine the strain

function more exactly by taking for it an expression which contains some varying

parameters.

The critical pressures are determined by us in the second approximation only

for the value of the curvature parameter k* = 80. From Table XV we see that the

second approximation reduces by 3.5°]othe value of the upper critical pressure and

increases by almost 25% the lower critical pressure in comparison with the first

approximation according to (48. 15).
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S 49. Influence of an Asymmetrical Irregt larity on the Deformation of

A Shallow Strip under a Traasverse Load

We shall consider the deflection of a strip with hinged edges. In that case,

the exact fulfillment of the geometrical boundary conditions is of considerable im-

portance

u_'v=w= 0 for x=_--a/2, s_b/2. (49.1)

Besides, the static conditions

should be satisfied.

_= +v-_=O for x= _--a/2;
d$ I

a_+,, _.___=0 for s::_-_b
dsZ dzi 2

{49.2)

Taking into account the geometrical character of the boundary conditions, we

shall solve the problem in the displacement components

u_=u, ,,_=_. _'=_.

We obtain the corresponding equilibrium equations from the equations {35.3),

(35.4), and (35.5), dropping the index I and using the formulas (35, 1}.

The conditions (49. 1) and {49.2) are satisfie'_ if

w-= (_ cos.v_ 4- w_ sin 2ydcos.x,; xl = _ c/a, yl = ,tsdb;

v_(utcos y, + atcos3.F, + u_sln2yt--u_sln4y,)sin2xl+ _49.3)

+ (a= COSyt + a|sln 2y,)sis4xl;

"e=(aisln2yt+vssln4y_+'obsln6yl+v_cosya+v_cos3yl+ 149.4)

+ "o_cos 5yt) co_ x2 + (_= sin 2yt q- v. ste, 4yi +

+ t,i cosy_+ _ cos3ydco=3x,.
|49.5)

Starting from the principle of virtual dlsplac ._ments, we shall apply the general-

ized variational equation (22.5)* in order to solve the problem.

In the case under consideration, the contour integrals in {22.5) are equal to

zero, as in varying the quantities u I ..... w_ on tae contour, everywhere _m_v--

_e*-"= 0 everywhere. The fact that the integral taken over the surface of the strip

is zero gives the equations

ff(_+oy.,_8.a,=o, if(or,, 0rt_s,a,= o (49.6)
d \ ax as / d J \ #_ #s )

* See the derivation of the equation for a cylindrical shell in /0. 6/.
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_{_r, + ar,,'_e_ _(er,, +at, ,_ e,,18_& =

(49.7)

The first two of these equations are the equations of Galerkin's method applied

to the equilibrium equations (35.4) and (35.5), and the equation (49.7) differs from

the Galerkin equation for the equilibrium equation (35.3) by the presence of the
additional underlined terms. On exact solution of the problem these additional terms

vanish. For an approximate solution, as the calculations show, they are small in

comparison with the remaining terms, and therefore we shall also integrate the
third one of the equilibrium equations by Galerkin's method.

Thus, subl_tituting the expressions (49.4), (49.5} and equating the coefficients

of _u 1 .... i_1 _w 1 to zero*, we obtain a system of 18 equation.s in 18 .parameters
Ul, .... w I . Because of the orthogonality of the functions oy which one ap-
proxxmates the displacement components u and v, the system of equations for expres-

sing ui, u_, vk, _ in terms of w1. w_ divides into two _e_ndent systems, one
of which contalns only the parameters of the symmetrical deformation, and the other

only the parameters of asymmetrical deformation, where vlr, v H are easily expressed

in terms of ui, u H Even though this simplifies consider_'bly-the succeeding compu-

tations, they remain sufficiently tedious, and therefore we shall carry out the further

analysis of the solution for the special case where

b/a = %. (49.8)

Let the strip have an initial irregularity

_o _ totsin(2_s/b). (49.9)

We also introduce the notations

q=pRbZ/4D; C=_,It; C=_/t. (49.10)

Then we obtain the fundamental relations

....
__ e_ a2(_ _ a3,89C" 2 _ 78.58¢_" ;

-- 25.09r.2 _*

(49.11)

(8.439r." -+-5,998_) r a -.[_(.L4 [r,. 4-- 1.638C,_) c./t" --}-62.08g.J,'* -{--

.+. 18,4r. a qu (0.00361/z *_ --{-48.4_ + 9.164)_' = O. (49.12)

With Co=O, _"_-0 , from the last equation we find the relation:

18.4_ ._ -- -- 5,44C _ -- 1.41_* -- 0.0/1361k *_- 9.15 _0. (49.13)

Hence it follows that the asymmetrical form of stability loss of the panel takes place

at k* >10.22.

Solving (49. 13) for various values of k*, we shall find the states in which the

asymmetrical deflection component is present or absent respectively, and

See article /XI.5/.
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from equation (49. 11)in which _"_0, we shall obtain the corresponding
critical values of the load parameter. To illustrate the process of solution we shall

first consider a strip with a small curvature parameter k* = 20. Here, utilizing

the condition dq/d = 0, we shall find for symmetrical deformation the pressures of

baagand collapse ql = 18.56, q2 = 0.323, and the corresponding deflection para-
meters

_1 _- 1.343; _ _ --4.007.

The dependence of q vs. _ is given by the solid line in Figure 33,

15 ---

5 ,--

0 j Z $ 4 $ "_'

Figure 33

Dependence of the load parameter

on the deflection parameter at the

strip vertex ()_= 0.5; k* = 20)

Solving (49. 13) with k*=20, we find that it ta:_es place when 0.408 _- ,_<_ 4.776.

This inequality determines the existence region of the asymmetrical deformation

component. Setting _ = -0. 406 and _ = - 4. 776 we ;-ind from (49.11) the critical

values of the pressure parameter for which the asymmetrical deformation is res-

pectively present and absent: q_ = 10.26, qH = 5. f8. The dependence of q _ for

the case _ > -0. 408 and _ _ -4. 776 coincides v'ith the preceding, and in the
segment 0. 408_ - _ _ 4.776 is shown by a dashed :ine.

With _0 '_ 0, by taking various values of _ we find from (49.12)the corres-

ponding values of _, after which we determine from (49. 11) the value of the pressure

parameter q. The dependence curve q vs. _ thus obtained for a strip with the initial

irregularity _0= -i is shown by the dash-and dot line in Figure 33.

As an example of a shallow strip with an upward slope, we shall consider a

wtrip with the curvature parameter k* = 100.

Carrying out calculations analogous to the preceding, we obtain for the case

a) for the symmetrical deformation of an ideal strip

_--6.358, _:_--20.39, qi=4274, q:_--I05.7; (49.13b)

b) with the presence or absence of asymmet "ical deformation:

Q_ 0.329, _--25.59. q_j_47.58, V_167,6.

The dependence of curves q vs. _ for these c_ses and for the case _0 = -1 are

given in Figure 34 by a solid, dashed, and dot-and-dash line respectively.
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Figure 34

Dependence of the load parameter

on the deflection parameter at the
strip vertex (b= 0.5; k* = 100)

The calculations given show that the asymmetrical form of stability loss with

hinged edges appears already in shallow strips with k* > 10.22. Therefore, when
the curvature parameter k* > 10, the determination of the critical load for the

symmetrical form of stability loss along one half-wave is of no practical interest.

This should be remembered all the more, since the initial shape of the strip

is not ideally symmetrical, and the deformation of the strip occurs as a simultaneous

development of the symmetrical and asymmetrical components of deflection. With

an initial asymmetry in the shape of the middle surface of the strip, it becomes,in
the first stage of loading, more flexible to bending, due to which the deflection ex-

ceeds by several times the deflection of an ideal circular strip with the very same

load (see Figure 34). In that case, the phenomenon of stability loss does not take

place in the usual sense, but from a practical point of view, one can take as the

critical load that for which either the deflection begins to grow fast without con-

siderable increase in load, or else becomes inadmisxibly large.
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S 50. Bending of a Shallow Cylindrical Stri) with Freely-Supported Edges
under a Uniform Trans ,erse Load

As an example of the application of separate integration by Galerkin method

of the equation of compatibility {35. 15}, and ofthe equation of equilibrium (35.3),

we shall consider the deflection of a strip unaer the action of a uniform transverse

load with freely-supported edges*.

The boundary conditions

Tz=a%--0, T,:-- o_, O, -0_'_=0=
¢}s"_i- -- Oxh'--_= O._t 70

±_ (bOA)

fo_ s--+ ±
--2'

are satisfied exactly, provided

2r,$\ __*-*,0+oo, - (50.,,

.,_.,co,_: ¢o,7 + _,co, _ co,_ _...._ _ + v. cos7 cos_-. (50.3)

Here W 1" "" w3 are the parameters being _arled and whichare to be determined.

Introducing (50.2) and (50.3) in the equations (35.3) and (35.15) and integrat-

ing them by the Galerkin method, we obtain the following fundamental relations

-I)[2_,+ 2 + L_-'+ l):l+ 2/, + 2X,l,=
--- 0.0625x-"(2¢_+ 9c]+ 9_+ _,c, + _,¢,+ _f_,)-

--O.1643k*k _(0.1 I 1l(,+ 0.02.22C:_+ O. 20_j).

2/, +/= la2_'+ _+ (4_,'+ 1)']=
,_ 0.0625k-"(--r.]- 9_- 2_a_.,--9tL_,-_25r.g,)

-- 0.5572h*:o (0.0222"., + 0.0( 44{, -- O.] 429r.0,

2)'f, ,--[-/, [2x, + 32 -]- 0 ' + 4)=1=

--0.6572k_k={0.0222;, O.)159_z+ 0.040_,). (50.4)

p" = -- 550 _),' _c 1)' r_, q- k'k* (17.5, 3f_ + 14.035f_ "k-2,807)¢_) -_

--}-240.34).' [f_ (_, + 15_, -}- 1 5r.,) +._(0.51;, -k 0.SQ -- 2 25C;1+

+/,(o5¢,+o5_, 225:,)1 (5o.5)

_.; Jf_ (5.5:., + I5C. + 13.Y.,) -pf_ (0 875_:, -4-05_ --6.937_)+
+f_(-- 1.187_, + 1.12Y., - 4.187r._)1-- k*)3 (0.1168/_ + gocA34/'_._-

J¢-O. } 368f._1 - 0.0229 (_.' -.}- 1)' v, _ 00687 (k, + 9)'_ = O. (50. 6)

)._[f_ (5.5_, -}- 13.5r., + 15_) -_-f= ( - I. 187_ -- 4.18Tr_-_ 1.125.'._) +
-_- j¢, (0.875_, - 6.937_ + 0 5_D] % _ *)J (0,4672fi - 1.06791_ --k
-i-0.327If,I--0.0229(kz+ I)__,--(.0687(9k_d- l)Z_, _ O. (50.7 )

Here we have set

#'_=_ :EP, _=_:t, wh,,re l= 1, 2, 3;

k* = b2:Rt is the parameter of curvature; p* : pb4:Et 4 is the load parameter.

* The investigation given below was carried out at our request by

M.S. Kornishyn and is being published here for the first time.
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If we consider f.., fs, C,, :_ to be zero, we shall obtain the solution of the

problem to the first approximation

where

p*_ - 5.50 (x_ + I)2L - 0.3202ak*:_x -- 6.5797a/*_ 30. IG=¢_, (50.8)

Q

3x, + 2x_+ s" luu.v?

In the case of a flat plate k* = 0,

p* _ -- 5.50ik_+ I) 2 _, - 30. I(_. (50.10)

In the following are given the calculated results for some particular values of the

parameters _. and k*.

A. Strip with k = 0.5. We shall first consider the solution in the first approxi-

mation. Setting ), = 0.5 in (50.8), we obtain

p* _ -- 8 60_ - 0 00543k-_Q - 0.1_lS/_*C_ - 0.510C_. (50.11}

Calculations show that for strips with k*< 55,2 the stresses grow monotonically,

with increasing deflections, and with '.* >.55,2 the snapping takes place.

In particular, for k* = 80, and the collapse at p_ 36.14 and _i,I = --3,45,

and the exhaustion at p_ = 36.14 and _I, 2 = --8.23,

If, instead of (50.2) we take for the stress function another expression,

namely,

=>_ %,. cos ,,,_xcos '_ _,_,n = I,3,5...a _ ' ".... (50.12)

as is done in /XI. 6/ and /XI. 10/, in the first approximation we shall obtain for a

similar strip the corresponding values p_ I6] = 262; p_ [10} = 258.

Note that according to (50.12) the stresses Tland T2are zero at the contour,

and the shearing stress Tl2is zero in the mean.

Thus. for our case, the critical load would turn out to be one-fourth as much.

This is explained by the difference in the boundary conditions which, on the face of

it. does not seem to be so considerable. Actually, in the works cited, the strip had

been more rigid, with edges supported by incompressible ribs which are easily bent

in their plane (see _ 48).

Here. we do not compare the lower critical loads corresponding to consider-

ably larger deflections, as for their determination the first and even the second ap-

proximations are not always sufficient.

Using the concrete example of a strip with k= 0.5 and k* = 80. we shall exhibit

the influence of higher order approximation_ on the value of the upper and lower

critical loads.

On the basis of equations (50.4)-(50.7), with _I = --3.5, we obtain _2 = --0.05,

_3 = +0.026, p* = 67.07. Here the deflection at the center of the strip is _c = --3.524.

If in these equations one sets _2_,_0 , retaining all three terms for _,

then for the same deflection at the center we obtain p* = 68.51.
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Fromequation(50,11)with _1-=_=_ --3. i24 we have p* ffi 64.16.

From a comparison of the obtained result _ it is apparent that in determining

the upper critical load for a strip with _= 0.5 and k* = 80 one can limit oneself to

the first approximation for the stress function, as well as for the deflection func-

tion. Such a conclusion is even more valid with respect to strips with X<0.5 and

k*'< 80. as the convergence of the process then improves.

Setting _1 = --8. fr.om equations (50.4)-(50.7) we find: _2 = --0.18, _3 =-1.10,

p* = 31.57, _'c = --9.28.

If in (50.4)-(50,7) one sets _.-=_,=0 , then for £,--_ = --8.28 we shall ob- .

tain p* = 45.64.

From equation (50.11) with G-_£, = --9.28 we have p* = 40.71.

Consequently, in the region of the lower ¢ritical load the influence of the higher
approximations on the stress function as well as on the deflection function is

substantial.

have:
B. The case of a square strip and plate. From (50.8), for a square strip we

p* = -- 2_.01_1 -- 0.04003k*':i -- 0.8225/_'(_ - 3 7_. (50.13)

On the basis of this relation, we find tha_ the snapping occurs in the strip when

k*> 33°5. For k* = 50, we find for the critical state:

_._.,_ -- 2 07_ndp_ = 109.90, C_.z_ -- 5.22andp_=51.48.

Utilizing the relations (50.4)-(50.7) we convince ourselves that with k* = 50,

one can limit onself, in the case of a square panel, to the first approximation for

the upper as well as for the lower critical loads,

As the value of the curvature parameter k* increases, the convergence of the

process deteriorates.

For example, for k* = 80, from (50. 13) _e have _1,1= --2,77 and

Pl = 345.6, _1,2 ffi --8.89 and p_ = --85.32.

Setting _l = --8, from the equations (50. L)-(50.7)we fL-.d _2 ffi --0.68.

_3 ffi 0.22, p* = +5.50, _c ffi --8.46. From (50.13) with _1 ffi _c = --8.46 we have

p* = --79.13.

Thus the load has changed its sign where0 as the calculations show, the funda-

mental role is now played by _2'

We shall consider the influence of the hi;her approximations, in particular of

the term with _2, on the upper critical load.

In (50.4)-(50.7) setting _3 = 0 and _1 = --3, we find

",:_ -- 0.40, _,_ 3.40, p* _ 290.39.

From (50.13) with ¢, =r_ --3.40 we o_taln p* = 333.06.

Consequentl_ the correction of the second approximation is also considerable

in the region of the upper critical load--about 13 %.
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For a square plate the equations (50. 5) (50.7) take the form:

-- p* = 22.0! ¢_ -4- 3.82 _;8 _ 203.05 :_s _1_ 129.28 (_22 ÷ 30.06_1;_2.

0.0916 C1-_ 5.868 _-4- 0,0_43 C_3 _ 7.421 _,aj 1u
-_ 0.9396 r,lK2 --_ 4.1U_j_; _ _ O.

(50. 14)

The results calculated according to this formula are close to the results found

by another method in /XI. 11/, as can be seen from Table XVI.

p* _X|.II} 26.7

p* [50.141 26.7

r

M3 --4

169.5 $46.2

174.9 J47.8

Table XV!

The method used in /XI. 11/ is universal and has allowed its authors to investi-

gate a series of important cases of fastening of the plate edges, but its utilization

requires very cumbersome calculations.

In those cases when at the contour static conditions are given for the stress

function, as is the case with our problem, separate integration of the original

equations by the Galerkin method gives the fastest results, which are also entirely

satisfactory.
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§ 51. Experimental Investigation cf the Bending of Strips

under a Transverse Load

We know of only one work, /XI. 9/0 devoted to the testing of thin cylindrical

strips under transverse loads in which 60 specimens with km a 11; _; 3 were

prepared from st. 2 and D16T* and were shaped to values of th_ curvature para-

meter 25 < k* < 125. The testing was carriea out in a special set-up; the loading

was done by compressed air and was measured by a mercury manometer with a

mirrored millimeter scale; the deflections at a series of points were measured by

indicators with scale division of 0.01 ram; the eeformations were measured by wire
resistances.

In preparing such shallow cylindrical strips with the ratio t'.R_l:l,000 it is

very difficult to preserve the regular geometrical shape. The specimens therefore

had initial irregularities.

Some of the specimens were tested under hinged edges, others under rigid

fastening. Together with strips attached rigidly and hinged at all four edges, strips

with free curvilinear edges were also tested.
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Figure 35

I--theoretical curve of the values of a 1 with asym-

metrical buckling; II--experimental curve of the

values of a_, taking into account the deviation of
the boundary conditions of the stmples tested from

the conditions of ideal hinged fastening; III--theo-

retical curves of the values of a2with asymmetri-
cal buckling

As shown by experiment, the strip defle( tions can be monotonic or be accom-

panied by a snapping, depending on the value o the curvature parameter k*0 and

also of the quantity k. In the latter case, the oad, having reached some maximal

* Translator's note: Russian symbols.
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value p L, starts to drop suddenly to the value p_ with simultaneous increaBe of the

deflection. Such a form of stability loss is characteristic for strips with a curvature

parameter k*>/40 and ;L>2.

Below are given graphs of the theoretical values of a I and a 2 from formula

(46. 14), and the values of al obtained from the experiment for long strips with rigid

and hinged fastenings of straight edges.
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Figure 36

I--theoretical curve of values of a l with asym-

metrical buckling; II--experimental curve of

values of a 2 ; III--theoretical curve of values of a S

From the graphs it can be seen that in reality the strips lose their stability

under a load considerably smaller than that given by the theoretical solution on the

assumption of ideal shape and ideal boundary conditions. The discrepancy between

the experimental and the theoretical values of a I are all the greater the smaller

the parameter of curvature.

Thus, in the given case we have a picture analogous to that observed when

cylindrical shells are tested for axial stress and spherical shells tested for external

pressure, when the loss of stability also occurs under a load considerably smaller

than the predicted theoretical solution under ideal conditions. The discrepancy

shown is explained mainly by the deviations existing in the experimental specimens

from the regular geometrical shape and partially by deviations in the boundary con-

ditions. This is confirmed by the theoretical analysis of the influence of these fac-

tors upon the strip stability, given in _46.

Proceeding from the experimental results in long strips in /XI. 9/, the follow-

ing empirical relations were obtained for the parameter a t from the curvature para-

meter k* :

=l'= 16.5-- -t." _, (51. 1)
k,"'
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with hinged edges:

=_ = 0.6 ,=,=, (51.2)

for values 25< k*< 125.

The dependences (51. 1), (51.2) are shown graphically in Figures 35 and 36.

h.
The curve a I _s situated somewhat lower t_an the corresponding experimental

points, which is expIalned by the fact that in testing the specimens, the hinge at the

edges was not ideal, and to take this fact into account in (51.2) a numerical coefficient

was taken which is somewhat smaller than its experimental value.

For strips of finite length,

is obtained in the form

a semi-empirical formula for the critical pressure

40
Pc'= P, ._,, (51.3)

where a 1 is the coefficient depending on the curvature parameter k* of the panel,
given by the relations (51.1), (51.2); J_l is the coefficient depending on the ratio of

=
the sides t =_. For fixed edges:

1,2
_'_== L -- _'_ -['- _ - (51o4)

for hinged edges:

+ (515)

where _ ) I.

The empirical relations given here are obtained from the reBUts of testing

a comparatively small number of samples and c_uld be made more precise at a later

date on the basis of more comprehensive experimental data.
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Chapter XII

THE STABILITY AND LARGE DEFLECTIONS OF

CIRCULAR CONICAL SHELLS

§ 52. The Stability of a Conical Shell with Circular Section

under Longitudinal Compression

We shall specify the position of a point on the middle surface a of a conical

shell by the distance r from that point to the cone vertex, measured along the gener-

atrix, and the angle _ between the axial plane passing through the point and the

axial plane of the origin of coordinates. Then in the formula of S 25 one has to set

a m•, _, k,==0, k_mclgT/r, B_rsinl, (s2.1)

where _ is half the cone angle.

f F,'

p

\

Figure 37

Let the shell be in equilibrium under a uniform external pressure p, and

compressive and shearing stresses uniformly distributed along the end sections.

We shall denote the compressive stress by To and the shearing stress applied to

end r = r 0 by x0(Figure 37). Then the internal stresses in the membrane state of

equilibrium, determined from (25. 11) and (25. 12) by neglecting the bending terms,

will be respectively equal to

Tl _ -- pr tg__.._.TT_ T_" o

I _ -"7-,

7_----prtgT, _2= - r_!_ (52.2)
r3 .
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Asone is considering a shell in the form of an i, eal circular cone. and the state
before the stability loss is considered to be a membrane state, in the equations of neu-

tral equilibrium (25.27) and (25.33) one should s_t

4 ...... ;= o.

The additional stresses which appear with buckling are expressed, according to for-

mulas of the form (25. 32), by the stress function _ :

7",-- + _ a_,,'' a"_-' (52.3)

a

The equations for determining _ and the deflection w take the form

DAA_.,++ctgy °_¢ --TIO_' _7 _,', ow , 1 o,w__

_" _/' °_7_,) ..... o,-- 2 . 12_,_T =0, 2'_'Jl--,?t ¢tglo_ctlr Or _

where

A(...)=a-_(...)+ _ _" " i _...)7_...)-- 7 _,_-. (52.5)

If the ends of the shell are freely supported, then at the edges r = r 0 and

r = r 1 one has to satisfy the conditions

w=O, T,=O, ,,:=0,

a'.-,_,• _ ,'v_.+ I a=. , u (52.6)

In the case of pure longitudinal compression

p---.= O. (52.7)

This problem has been investigated by I. Ya. Shtaerman /XII.1/ on the assump-

tion that an axially symmetrical buckling oecur_ with the loss of stability of the

shell buckling*. With this assumption

A(...) *d[ d ]=-_ r_-(.._.

Consequently, introducing the notation

= dzejdr

and integrating the equations (52.4) once, we shall obtain

(52.8)

rdFL a--(rd)-'_]=Et(._-C)ctg_,
drLr dr\ at" /I

arLr dr" "3 ) ct'_T'_T°r*==0'

(52.9)

(52.10)

* Non-axially symmetric buckling has been considered ins 20 of /0. 13].
See also article [IX.8h
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wherec and c' are arbitrary constants. Eliminating the quantity d_V /dr from(52.9)
with the help of (52.10), we arrive at the equation

DA2az'o b Toroa_ 4- Et _ct_2 ; + Etc ctgZT -e' ¢_gT_-- =0 (52.11)
r

where

a,(.)= r4"(---k) + _ _)
_r_ ar r (52.12)

The homogeneous part of equation (52.11) can be represented in the form

(_= + :n0 ('_2 -b tad ¢uo= 0, mlrnz = _c-_D I , mj + rn_ _ ro_e (52.13)D

Here m 1 and m 2 are roots of the equation

Din= -- Tor o rn _- £t ctg' T _ 0.

The absolute minimum of T O is reached when

m _ F/Et ctg 2 ;/D

and is equal to

To = 2 V DFt c_ z T/r. z.

Consequently,

mx = m_ = Tor_/2D,

Thus, instead of equation (52.13) we have

(±, + m) t._, + ,n),_ _ 0

The integrals of the equation

(_+m)%'=r_t'_" +_'°-_ (m--_) _''_O,_r"_r

are also integrals of the equation (52.13a). By the substitution

x = 2 V-&-7

the latter is reduced to a second-order Bessel equation

a%' + 1__ _o'
d.. _ ,, _; +(1-- _)'°o '=o

whose general integral is

(52.14)

(52.15)

(52. 13A)

(52.16)

(52.17)

_o' = C, h (x) I C=N_ (x), (52.18)

where 12 and N 2 are Bessel functions of the first and second kind.

It is not difficult to convince oneself that the function trimS/dr is also an inte-
gral of the equation (52.13a). Besides, equation (52.11) has a particular integral of

the form C 5 + C6]r. Thus the general integral of that equation has the form
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.--_ --c./,(2V-_)+ C,N,(2I/-_))-FC.r_,IG(2I/-_-7_I+dr

C_--C5, C'_ -- ToroCstg'_ 2v Et ctg;'C_.

(52A9}

Integrating once more, we shall obtain the expression for w where an arbitrary

constant C 7 will appear.

In the case of a symmetrical deformation, as can be seen from (25.24), upon

satisfying the boundary condition w = 0 the boundary condition e2 = 0 becomes equi-

valent to the condition u = 0, which can contradict the condition T I = 0. We shall

assume that the skin can slide along the transverse ribs and, consequently, it is

not obligatory to satisfy the boundary condition e '.I= 0. Thus, in the case under

consideration, three boundary conditions ought to be satisfied at each end.

The computations are simplified if, as in /XII. 1[, one limits oneself to the

case of a dome with a very small opening, as with r-*0, Nz--* z and to keep the solu-
tion finite it is necessary to set C 2 = C 4 = C 5 = 0, where it is sufficient to satisfy

the boundary conditions at only one end r = r I. Besides, it is useful to take into

account that according to {52. 14), for large values or r the quantity 21mr is of the

order of ]R/t. Consequently, 12 and its derivatives can be approximately replaced

by their asymptotic expressions

I,(xl_--_o_(_-_- j s, sin T_)i,.- (52.20)

in the case of a symmetrical deformation we have, according to {25.24) and (54.4)

But for the membrane part of w, equal to C 7' one has to satisfy the conditions

T 2 = 0, Tlrsiny = const or e 2 + Vl=0 , r(e 1 +ve2_ = const, u +wctgy= const.

Consequently, with w = C 7 we should have u = cor st., _1 = 0, e 2 = 0, i.e., the de-

flection w = C 7 produces a displacement of the sh,._ll as a rigid body, and does not
influence the deformed state and the boundary conditions. Therefore C7 may be taken

to be zero.

Thus, it remains tochoose C1, C3, C 5 in mch a way as to satisfy the boundary
conditions.

From (52.10), taking (52.3) and (52.16) into account, we find

cL Des rnD _T, gv= _---3--,

Consequently, in order that the condition T I = 0 ke satisfied when r = r I, we should
have

C_ _ :nrl _ at r _ rt, (52.21)

To set up the equations expressing the boundary conditions w = 0 and dw/drnr_/r =

• 0. with r = r I or x = x I = 21/'2"m7_,it is necessary to carry out considerable compu-

tation work. Here, besides expressions of the fo-m (52.20). we use the formulas for

the differentiation of Bessel functions with p = 1 aad p = 2:

290



To simplify the computations we shall neglect quantities of the order of unity in com-

parison with quantities of the order of xf. Thus. after eliminating C s by (52.21),

we bring the geometrical boundary conditions into the form

c_(lo --'/,) .... -]- ,(c,l_+ c.£t_x_/_ =0, (52.22)
k " 2 1,-,,

In order for these equations to be consistent, we should have, for c 3 _= 0

io(x=x,.)=.f, tx=x_) or [g(2 m]/'m'_-t--_-) 16

Simultaneously with this equation, (52.24) must be satisfied, and therefore the equa-

tion

I/ £t ctg "r/O = m_,

should be satisfied, where m 0 is a root of the equation (52.24).

This will not be satisfied exactly, but one can choose two successive roots of

' and m_, between which m 0 will be included, and as these num-(52.24), namely, m 0

bers are rather large and their differenc? is small in comparison with m 0, the value

of T o at m determined from equation (52.24) will be only slightly larger than the

absolute minimum of T O given by (52. 15).

In conclusion let us note that from (52.15) one cannot obtain the formula for

the critical compressive stress in a circular plate by setting ¥ = n/2, or a formula

for a very shallow conical shell, as for small values of ctg y the quantity |,'_.,_ is no

longer much larger than unity, and the asymptotic expansions of the Bessel functions,

which we had used, are inapplicable.
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53. The Stability of a Conical Shell un ter the Combined Action of

Longitudinal Compression and Exte real Normal Pressure

The stability of a circular conical shell under uniform compression had been

considered, apparently for the first time, in article /XII. 2/, where no attention

was paid to the fulfillment of the boundary conditions. Later, I.I. Trapezin in
article /XII. 3/ gives the solution of that problem by the Galerkin method, satisfying

only part of the boundary conditions--this work, like the article /XII. 2/, not being
carried through to computational formulas. Therefore, here we follow our article

�IX. 8/, where the question has been treated generally with the proper consideration

of the boundary conditions.

Let the shell be under a uniform compresston p and a longitudinal compres-

sive stress whose absolute value at the end r = r 0 is To. Then, in the formulas

(52.2) which define the stresses before the loss of stability, one should set t o = 0.

Introducing the substitutions

r
z=In--, q_Fcosnt'_, w= e_,Z_vtcosnl?2,

ro

I - _ n _l/sin 7
sin T

(53.1)

9

and neglecting unity in comparison with n_ according to the theory of shallow shells,

we bring the equations (52.4) into the form

ct.F 4d_F __ 2tt_ I d:F ,at' d: _ dz----;+ 4nt' = + n]¢F -

,Pw, 1 ) _:'- --}..-.,,,.... ) w,l_O,
Erro e(t+.,.[" - + (2vt -- '

(53.2)

4 z 14w't ....e(,= - / --
{d:' ---4(1--vl)_-- ,a'u_ d_e. __

+
D tg 1" kdz _ dt/-- r > L2 dZ*

' ]- .,, u,,j 4-
+ rv#,'fa2%, . ,o a=,, _, _ .

--O--_dz" Tl'_"--1) d--_-_-t,= -vt)w.jj = O. (53.3)

The boundary conditions (52.6) take the form

=_ = 0, _-"_-= 0 ] (53.4)
dz_ ' foz Z _ O,

•_/'__n=_F=O, d_F dF=0 J z= r'=ln(l+L/r°)"
a: _ ¢_ (53.5)

We want to solve the boundary value problem, ta_ing the waves along the shell length

to be of the form

7zt = A sin re,z, ml = rnurtL (53.6)

Here the boundary conditions (53.4) are satisfied if m is an integer*.

(53.7)

* Translator's note: the numbering of formula_ in the Russian text inadvertently

introduces (53.7) where no formula seems to be referred to.

t
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The initial equations are applicable only in the case of a short, thin shell

which buckles with a formation of a large number of waves. We shall assume that

one is considering shells of medium length, for which

rosin 1"_ L, (53.8)

where, just as before, the symbol - indicates that the two quantities compared are

of the same order of magnitude.

For shells of small angles

_ = in(l+ L/ro)_ stnT,

and we have _ -I, if sin "f-I. From equation (53.2) we find

F = A,e": + Aze .... + B=e<.,',=)• + Bte:--",)'--

-- AEtr o ctg yeCx'v'&'(¢ sin m,z + }(cos rniz),
(53.9)

where A1, A2, B 1, B 2' are arbitrary constants.

___. m_a+*,--v_ t , _m_ (l-2%)("%s+"1')+4v_*

trn,=+ .,')' {m,=+ .,9=

(53.10)

Satisfying the conditions (53.5) we arrive at a system of equations for deter-

mining A1, A2, B I, and B 2. When approximately determining the hyperbolic terms

of the expression (53.19), one can set

sh n_ _ ch n,'-.

and all the more so since, as will become evident in the following, these terms

have a negligible influence on the value of the critical load, Thus, we find

2(nt=--nt)shn,_ 2 (.,+ l)shn,_

A==_; B=_-- 0'--
_= + "t n,- I

(53.11)

where

(53.12)

As the geometrical and the static boundary conditions are satisfied, we can in-

tegrate the equations (53.3) by the Bubnov-Galerkin method, multiplying its left-

hand member by *#rard? . The characteristic equation obtained has the form

where

p--Q--M+N=O. (53.13)

p= m,:<m,=+ .,')=/(r_:+ l-v,9,
.,t+x,[m_ + 3%{l- *,)-- 0.51

Q_L ,.,* + 025(I +2,,) =

4,,, I *. ",% _*.+",*.)'_t4-
m = :-_-,-7 T_,.+(.,_.q- ,)= -,=+(.,+_,- J)'--

+ 0_.,*(.,+2) + %(%-2)

m = Ira,(0, - 0,) + ,, (¢, - ¢,)1/(.,,' + .,') (53.14)

293



ORIGINA.

OF POOR QUALITY
with the notations

I- v
p_|.._ L, _Inp, v,_ _-, v=._l--2vlz,

re

¢|.__ ,_:=(I -- p2,,-2) _) _ (I + 2_,)Et (pz', -- _)

12roS ell/a t ( t -- v_) (pZ,= -- l ) (1 -- v_j 2+)r o tg+ T {'P=+ +', -- I)

X_ T°(I -I-2v,)(I --p--+} Jj _0,,_-_- }'[m'z 4- 0"2b(I + 2Y')z+

vprot_ T (pt+l_ __ l) ' m=t-{-0.25v =

emil

R= Z_[_,_ + o._0_,,(=,,+ z,,),]+=,_ +,,>+,,') . m, = _.

Y1z _ a=(m,z+ v,_')=,= +t = ]_3
I_,z+ (+- ,,Fl(_='+ ",_"

(m is an integer).

(53.lS}

This equation can be considerably simplifi,.d for an extensive class of thin
shells, satisfying the condition:

C_lnp_l. L _-. l+:2r o (53.16)

Then, from (53. 15) we have m_t 2. Retaining only the principal terms in the ex-

pressions (53. 12) and (53. 14), we obtain

M ¢+.[+n_+- 2,n,=-- m.=nl=4-2 _I -
N _.=lnh =+ (a_ + ,, + IFJ|m,*+ n+ +,, - I)_{

Calculations made with this formula by taking ac :ount of the expression for P and
of the following solution show that+ admitting ar overestimate of 2-3% in the value

of the critical load, one may neglect the quantity M in equation (53. 13) and thus
somewhat simplify the expressions for Q and N. Let us note that the maximum

error occurs at the boundary of the region when he shell becomes arbitrarily long

and it is desirable to support it by elastic transw:rse ribs. With the decrease of

_,, this error, as well as the error from neglect ng unity in comparison with n+
(which we had been doing systematically) falls sharply to 1-2%. Thus, we shall de-

termine the critical load from the approximate equation

25 m,2+o2s(t+.%,),-- ;,_17 _ q-(t_,_ , ,,,)

In the special case of longitudinal compression p = 00 p), is given in terms of
T O by (53,15), where it is not difficult to convinc* oneself that to the critical load

corresponds the value of m 2 > 1. Consequently, equation (53.17) may be replaced
by the approximate equation

To(l ÷.%_)(I p-.) *=(_a'i" _=i_* Jr- mt'_

and the critical value of the compressive stress i 3 equal to

ra,, _ YKc,(i -,_ f_',,--D 0 - Fz,-_ Ro = ro tg.¢.
1/';70 - *_)_',(]- p-')

(53,18)

The deviation of this formula from the analogous .=xact formula (52. 15) results in an

overestimate of 4-5% with _ _<1.

Utilizing the notations (53.15) and setting, in addition,

8 = (ra,= _L n,_)/mj, (53.19)
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we bring equation (53.17) into the form

p = g(',2_'+ t/_) : (),,- 1 -F-e/m,_. (53.20)

By replacing the quantities m z, _, by m and e respectively, this equation takes

the form of the corresponding equation (36. 14) for a cylindrical shell, and there-

fore, without repeating the rest of the analysis, we give only the final formulas for

the determination of the critical value of mt and p:

a)

b)

ra=l, tn,=_/lap, p_tJr-L/ro;

,7+_.,++. _, = ¢:-_-/:+
P"= I -F(X,- I),.l]6 _ '

for shells satisfying the condition

0.49 > 01_t -- 0.83, 0z_2(l--k_)ml/_,;

(53.21)

(53.22)

(53.23)

c) for shells satisfying the condition

0,86 _ Oj_ -- 2.93 (53.24)

the approximate value of the critical pressure is equal to

c,33+ + 1)(1+p,].p=
(5s.25)

where J_ is the smallest-absolute-value root of the equation (36. 19). With k = 0,

_! = 0.5, one obtains the formula for uniform compression.

With 0.25 _/_v_ 0.33 (as is usually the case for metals) after simple calcu-

lations neglecting the second degree terms, (53.22) may be written in the form
in the form

l 41 '(pl-, -- I )'/_(I-- p-O+,)}'/* E _ r (tlR,)_
(_-, - t) [t + eO, - o.,s))tne

p=l_{_ t, _=(2-_)roO--P-,) Ro__rotgT,
r, p,%,(p=-,- I) ' (53.26)

9 -----[.13
p-_ -- In p'

when the condition (53,26) is observed, or

0.49 >/(I -- 2X)O > -- 083. (53.27)

Let us note that in passing from formula (53.22) to the simplified formula

(53.26) we have reduced the critical pressure by at most 5-7 % (with in Q = 1), but

formula (53.22) in its turn had been derived from the characteristic equation (53.13)

by simplifications which increase it by 2-3%. Besides, by approximating the solu-
tion from (53.6) by one term of the series, we had increased the value of the critical

load, where for axial compression this increase turned out to be 4-5%, and there-

fore our last transformation of formula (53.22) results in an improvement. Thus,

as a result of all the simplifications, formula (53.26) gives a value of the upper

critical pressure close to the actual one.
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$ 54. The Stability of a Conical Sh_ ll of Varying Thickness
under Uniform External Pressure

Let tie shell thickness vary linearly along the length

t=ar (=_to/r_) , 154.1}

where t o is the shell thickness at r = r 0.

The investigation of the stability of such a shell is of interest, mainly be-

cause it is a uniformly strong, thin-walled strm ture. Besides, the equation of its

neutral equilibrium can be integrated exactly /All. 7/ for this case.

The stress in the membrane state of equilibrium are determined, just as
for a shell of constant thickness, from (52.2)

T_ =--_ prtg'_, T_= -- ort_'_. 154o2)

We determine the additional stresses and Jnoments appearing with the stability

loss of the shell from (25.24) and (25. 25)

/141--Dor=(xlq-,x,), 2Hj===Dda_l--*)x,:, 1,2 (54.3)

where

£a E= = D du

Ko--I__, O° , °,== ,|21| --,'1 r _ dr

°_=____ +/(s+=ctg.t); _ 0,, ! tO= \ 154.41_'" - _ + 7k_;; -")rOIp I •

o_ t a_, I ,r_ a(i o_
== ==--_¢' ' =..... r at r_ o,, ' =_==--_\7 _,/" 154.5)

Eliminating u and v from (54.4), we find th_ equation of compatibility:

Or= Or O_,' O,o_, (_'=_ ')= • ctg I _'_-.

Upon expressing _t, 82, and e12in term_ of the stress function _0 according

to (52.3) and 154.3), this equation reduces to the form

(]-_)o,+ 4 2(i-_) _'_ I-2 _._,, 4 t_

We obtain the equilibrium equation from (7 4) by use of (52.3), (54.3)-154. 5):
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• dr t Or_ r •

--T,a_=-T;(L_+'a" O.

After substituting

z=In-r , ._=Fe'_cosn?, zv =e-'I,_w, cosn? (54.8)
ro

and neglecting quantities of the order of unity in comparison with nl2, the system of

equations (54.6), (54.7) is brought into the simple form

d'F '2rll= d'F +lz?F-K_k(O_'---2 q- rnt _-0,
d_-'_-- a_--; \ dz" -a:.

a'=",lz' ('2n'_--_) _=*az' _-(n"--P"n'=''l+

' dTl" I dE 3 -+
/Jo \dz a: 4 ]

P,_ = p t__ (54.9)

Taking wave formation to be of the form (53. 6), we arrive at the characteristic

equation

(m,' + n,')'-- p_ (n,' + _'--')-_- (54.10)

4- 2,5m_"_+ 9/16 0"1-_ rig Tm,' =
Do (m_2+ n,_)_

QUALi;¥

This equation, obtained on the assumption that n 2 :> sin 2 y, is applicable pro-

vided that the shell is of medium length and small angles, as even for shel?s of

medium thickness n >_3; or, if the shell length is less than the radius of its smaller

base, buckling occurs with the formation of a large number of waves along the cir-

cumference.

For a short shell of not too large an angle, satisfying the conditions

_30 _, L_R,=r=tgT, (54.11)

we have

_=ln( l'l'/''_</'ro/ 7' m't=>_4""
(54.12)

Here, in the last term of the left-hand member of equation (54.10) one may neglect

2.5m12 + 9116 in comparison with ml 4, and thus obtain an approximate character-
istic equation identical with the corresponding equation for some ficticious cylin-

drical shell

(-,'+ +
(54.13)

q__. c,g_.__ra, 'l(m,' q- n,')' = O.
r_l I Do

Let us note that here the admissable error in the value of the critical pressure is

one-fourth the error tolerated in the above-mentioned term of equation (54. 10), as

with the critical value of n t this term, according to the analysis carried out for the

cylindrical shell, is one-third of the first term of the equation.
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With the shape of wave formation defined b V the equalities (53.6) and (54.8),

the following conditions are satisfied exactly:

_=0. r=----O at z=l_, z=_. (54.14)

The first of these is apparent from (53.6). The second conditions is satisfied, as

, -_-- ?-" f_'2 _" +_)_o_ ._,

where the expression in brackets, according to ".he second of equations (54.9), is
equal to zero at the shell edges.

When the boundary condition T 1 = 0 is satisfied, it follows from (54.14) that

the geometric condition e2 = 0 is fulfilled. How*,ver, the boundary conditions

Ti=O, Mt-----O at z_-(, z_ (54.15)

are not satisfied exactly. The principal part of _he expression for T 1 is. according
to (52.3), (54.8), and (54.9).

_" _ == .,'AK._(.,,,=- 3/4) { s_nn,,z-t- o_ cos m,z_,j
_,11=-- --

4

therefore, the condition T 1 = 0 is satisfied at ev,._rypoint of the edge contour only

upon neglecting unity in comparison with m x.

It can be shown that the maximum value of the unbalanced contour forces, ap-

plied to a contour element defined by the angle d p, is m: -2 times the corresponding

potential energy of elongation of the middle suffice of the shell. The error from

the non-fulfillment of the boundary condition M I = 0 will be even smaller, namely,

of the order of mr z/ni 4 in comparison with unit,,. Without dwelling here on the

proof of these assertions*, we shall only note theft to obtain an approximate charac-

teristic equation (54. 13) from equation (54.9), ole has to neglect in the latter the

quantities w and F and their first derivatives wit a respect to z in comparison with

the second derivatives. There, F will also be p_'oportional to sin m_z, and conse-

quently, the conditions (54. 15) will be satisfied l,y retaining only the higher terms.

We see that tolerating a comparatively large error of the order of unity in compari-
son with m in the boundary conditions (apart froI_ the principal condition w = 0) and

neglecting the terms containing odd derivatives c,f the required functions sought in

the differential equations leads to an error of thl order of unity in comparison with
m t 2 in the determination of the critical load.

Thus, admitting the error indicated in the ralue of the critical load. we may
consider that the boundary conditions are satisfi_ d and the critical pressure is de-

termined from equation (54. 13) in the same way n which it had been done in S36 for a
cylindrical she11, and the formulas derived there for the cylindrical shell are trans-

formed into formulas for a conical shell of varying thickness, by replacing the
quantities t/L. t/R, Rt/L 2 respectively by

=/_, =ctg';, =tgTtC _.

Thus we find, for example, that

* See Chapter II of /XII. 7/.
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by satisfying the condition

0.85 £_ _'_ ctg T)'I,. (1 0.6.5P'= (1-_,).J._ --U g;_) (54.16)

(54.17)T_ r-z-

Another limiting case is of special interest: the consideration of the stability

of a conical cupola with a very small opening of radius rosin y for r0--*0/XIl. 8/.

In that case

L oo "_0
r._in_l-_-;o-)_ , m,=¢ ,

and in equations (54.9) and in the boundary conditions one may neglect all the terms

containing derivatives of F and w I with respect to z. Then all the boundary condi-
tions are satisfied, and from equation (54.10) we find

(54.18)
rZl_ .I it. \'h• -- - (,'o_ ._)'m,(sin -;)'t, ¢I -- ,_)'i.

TOt,,) -

07:,_ _,(,_.f,.
P" t(-,)fl, r_ tr.t_/ " {54.19)

Our original equations had been obtained on the assumption that along the

shell circumference many waves are formed, This assumption, as can be seen

from (54,18), is realized only for values of y not close to 0 or _]2.
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§ 55. The Stability of a Circular Co lical Shell under Torsion

We shall consider briefly the determination of the upper critical shearing

stress T ._, uniformly distributed along end se¢:tions*. We shall solve the problem

by the Ritz method, making use of our energy criterion for stability, expressed in

the form of the variational equation (25. 31), wl_ere B = rsiny, el,. ..... ×12are

quantities given by (54.5).

ling,

whe re

For the components of the additional displacement which appears with buck-

we take the expressions

. - C,e"{sin(_.,z+ n?) - s n (,_,z+ .,)} ,

= - - 2Ce z sin (v.z q- r ?) sin mlz,

(55.1)

=5=_",_-__J _=In(14- _) --_'+_'z=Inr/r_, m, _ 2 ' r ' _ 2 " (55.2)

and C 1, C 2, C are arbitrary constants.

It is not difficult to show that the functions (55.1) are the exact integrals of

the differential equations of neutral equilibrium (25.26), (25.27), in the limiting

cases when 7 : 0 and ¥ : n]2, and in the genera[ case satisfy the essential bound-

ary conditions

a=v=w=0 at z= I, z=C (55.3)

Introducing in this section the notations

Is]= 2D(l + _Jlr:._)( Co, = , P_ ,

K(p_ -- I) :o J ' K(?:-- l) (55.4)

and substituting from (55.1) into (25.31), we obtain a quantity proportional to 3

9"= Co' + + +"" +:"+ +

, 1 " _ ]q-C,C: (1 ,-_-v)-t-CactgZl'-_-;.- ?a at- 4) -r- n_ Fnia-Q[__(_i ' 2 ,

-_- 2C_Cn, ctg I + 2C_C*Is ctg7 4- C2']_{ v.,*+_nt__.,.'

-}-(l -- ,)(p, q- _,_)(n, +C ctgT/C)"}.

Here we neglect quantities of the order of unity in comparison with nl 2 in the terms

containing the small factor D/r02

_.-_.. ........ .

* See article /XII.6[ and also § 19 of the mono_{raph /0.13/.
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Setting up the equations

c)3"/o_C_= 03'!0C,_ _ 03'/0C = O,

eliminating C, and C 2

in comparison with n,2, we obtain the characteristic equation

Co _ 5'2 C'r_a

_!..i (i __ .#) ctg_ T

'=

F ,o_- i _'(_' + m,9 j

I tiO':t I

from them, after neglecting quantities of the order of unity

(55.5)

where

•_ i]mil __ lit ( tilt -"- t,t'J _ rtll 1) al -,t- ml l

_o:i_. _z , v_=--2(1 + +) 2(I --'+1 "

_0,

(55.6)

The subsequent problem consists in the determination, from (55.5), of such values of

_,: _, 2_, and n 1, for which CO, and therefore also _0, has the smallest value.
To simplify the solution of that problem with the aim of obtaining a computational

formula, we shall limit ourselves to the consideration of the most important case,
when

,_<< _. (55.7)

From the expressions (55.6) and (55.4) it is apparent that the condition (55.7) is
satisfied if the shell is thin and the value of X is not close to _12.

Further, as is shown by trial calculations, with values of ck, equal to 0.1,

0.05, and 0°02, the critical values of _0 are approximately equal to 2.0, 2.5, and
3.5, while the critical value of _ is in all cases approximately equal to 1.2, and

the, _fore {with an overestimation error of less than 2%) the quantity C 0 may be deter-
m. from the approximate formula

' ,55.+)Co _ p-_ 2 - I _.,i,__ \

From the conditions of minimal critical load

6Co/d_ =0, OCUO0 = I)

we find by the method of successive approximations the respective values of _0 and

_. As a function changes slowly near its minimum, to determine the critical values

of _ and p0we shall neglect e_,/# in comparison with unity in the expression (55. 7)
and set

t 1 +..) +__+ ij,o.F_-- i_°( [ 2,1%' 8t_ 'l

Thus, to the first approximation

A,_ + I+.,+)
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Herefromequationst)Cd_O and OCo/O_O we find

_'--1.236, _-_ 1.23(-_) m, C _ 2.61(_)" " .

Introducing these values of _ and iL0 in (55.7), ,re obtain

,-,
_-s 413/0 '2 n-2_3 -- 0 375 i 0 11 _"]

l "I -J

With v= 0.3 and ek= 0.I, we flndC011 /CIo =1.26 . Usuallys_0.05. and then
l

CoH /Co] _ 1.15 . Regardless of the considerable .iifference between CoH and C 0, the

error in the value of Co, given by the formula (,_5.8). does not exceed 5 % even with

¢ = 0.1 and 0.25 _v_ 0.33, where C_ t.,rns out to be larger than the critical value

Besides, as is well known, energy criterion for stability gives an excessive

value of the critical load, and therefore we shal improve the formula for Co by

dropping the last term in the expression for C0;I, which for E = 0.1 constitutes 8%

of the value of C o .

Thus,

(55.8a)

For a short shell of small angle

In that car

2 Lq1 p.-_Lt_R; e_ 2,97tRp--l= _-, C--in , _

and we obtain for the critical stress a formula differing from formula (38.17) for

the critical shearing stress z I in a cylindrical shell only by a numerical coefficient,

where the range of applicability of these formula,,, is defined by the inequalities

(38.16) or

0.03 _ =_,_ O. 12. (55.9)

Calculations show that the ratio of the critical shearing stress at the boundaries of

the region (55.9), found for a cylindrical shell fr}m (55.8a) and (38.17) are 1.14

and 0.99, respectively.

This coincidence of solutions obtained by different methods may be considered

as entirely satisfactory, if one takes into account that in this section we satisfied

more rigid boundary conditions (55.3) than in _ 3 L

For values of y not close to _/2, the critic_l shearing stress is determined

from (55. 8a), where the values of C o for v = 0.3 nay be taken from Table XVIL
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I

0.12 O. lO 0.07 0.05 I 0,03

Co 3.75 3,87 3,95 4.08 4,3I

Table XVII

To our regret, we do not have experimental data for a conical shell which

would allow us to judge the influence of factors not taken into account in deriving

the formula (55. 8a). In the case of torsion of a cylindrical shell, to make the theo-

retical formulas (38.17) agree with experimental data it is necessary to introduce
a correction coefficient 0,6. It is to be assumed that such a coefficient should be

also introduced in formula (55.8a) as long as it is not established experimentally.

In the limiting case of an annular plate, when _/= x]2, our approximate solu-

tion is inapplicable. But in that case it is easy to integrate the equations of neutral

equilibrium (52.4). The solution of that problem which fulfills the boundary con-

ditions has been given in /XII. 9], in which, however, no computational formulas

are given. If one limits oneself to fulfillingthe more important boundary condition

w = 0, as is done in /0. 13/ and /XII. 6/, the critical shearing stress may be deter-

mined from the approximate formula

(55.10)

where n 2 and m 2 satisfy the equations

n:=_(m,+2), m:= 2¢1(n_- l)'-;-(n'+4k_)21"(nzq-4_'_)z,

a and b are the inner and outer radii of the plate,

pfl+r_=-_<7.40; _--Inb/a.

(.55.11)

If n 2 is not large in comparison with unity, then instead of n one should set in (55. 10)

and (55. 11) the integers closest to it and the critical stress is the smaller of the

values of T 12 thus found.

If Ca<<=a, then

= 4_.4_ ra=_-- 2.125-(, T I _.SD ( _)2._ _1 " It 12, K =--ii 1 : In (55.12)
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OF POOR QUGL__Y

§ 56. Lower Critical Load of a Conical Shell*. Local Stability of Shells

To determine the critlcal load of collapse from the state of equilibrium with

large deflections, one has to use the relations of the non-linear theory of shells,

which for the case of a circular conical shell may be obtained from the formulas of

$ 25 by setting B = rsin¥. Let the shellhave the ideal regular shape, i.e., w° = 0.

Then from (25.12) and (25.33} we obtain the condition of compatibility and the equi-

librium equation

4- ,-,\ _v, / 7 _ or* -} ctg'_ _,, j,

o,./ (56.2)

where TI. T_, TI2 are expressed in terms of _,[ according to formulas (52.3).

Introducing the substitutions

z= In (rl,,). _'= e-'F. _'= r ctg_e'cuI, (56,3)

we reduce these equations to the system of two non-linear equations in F and w I ,

whre the independent variables z and q_1are dim_nslonless quantities. As had been

shown in §§ 52-53, with the loss of stabllity of a thin conical shell under longitudi-

nal compression, many waves are formed in the axial and 1ongltudinal directions,

so that

.,_R/_>> L,._= a'/sin=->> t.

In the csse of transverse pressure, at least, n 2 > I. This means that the second
derivatives of w I and F I with respect to _,= _ s n "fare large in comparison with

the functions themselves. Besides, ifthe shell i_ short then b=w[/dz_>>_l, and

in the case of a shell of medium length, O=wl/_z_ w I .

Experiments show that for the state of a sh,.qlclosely spaced buckles and dents

are characteristic also after the buckling. Them fore, to slmplify the equations

(56. I) and (56.2) we shall neglect w_ and F _ in c)mparison withtheir seconddertva-

tires with respect to q_,. Thus, we arrive at the _;ystem of equations

_ ] _a'_"i_l__"i _ -
M_F i = Etro ctg _ _'e"/\ tzd_, I O_p' \ dz_ ' d; /

I I/¢)_FI

+ (o., o.l _ o,r,o,,,i

* See article /Xll.4/.
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We shall consider these as the initial equations for the asymmetrical deformation

of a conical shell with n_ > 1. They may be considerably simplified for the longi-
tudinal compression of short shells, as in that case w I and i increase rapidly in

absolute value with the change in _tas well as with the change in z. The ratio of
two successive derivatives is of the order of IR-_, and therefore for thin shells,

when I t/--R _ 1, we shall neglect F and w{ in comparison with their first derivatives.

Besides, as one retains only the higher derivatives, their variable coefficients

(determining the geometrical characteristics of the shell) are smoothly varying

functions; the latter may be considered as constant parameters, subject to deter-

mination from the condition of minimality of the critical load. This corresponds

to the consideration of the stability of an infinitesimal portion of the shell near

z = zc, whose metric may be considered as Euclidean. Therefore, in equations

(56.4) we shall set e:_ ez_ = const. Thus, we shall obtain the approximate equations

D_w_e_---_, +_7 gT, -_o_,, o_, (56.5)

Carrying out the additional transformations

, _--, Z=--, _1=--, Ze_Jr]- (56. 6)

r e ct' d ] r c rc ro '

we arrive at the equations

t \O._Os] Ox z Os _ rc_r dx2J D

DMI_ | +
re tg r Ox_ $'ra Oa_ Os_ r_t '

3xOs #xOs (56. 7)

These equations coincide with the non-linear equations (40.3) and (40.4) for cylin-

drical shells with the fictitious radius R c = rctg Y. They are obtained by neglecting

quantities of the order of [tlR in comparison with unity, which is mathematically

well founded, as JtlR-*0. This is the so-called asymptotic integration of the equa-

tions of the theory of shells. In those cases, when with the loss of stability very
short waves appearing have lengths of the order of ] RTt, the replacement of the geo-

metrical parameters of the zone of one half-wave by constant quantities leads to an
error of the same order of magnitude. This idea, initially applied to the linear

theor:_ of the edge effect in shells, was utilized in the theory of stability of shells

for the first time by I. Ya. Shtaerman in work ]XIL 11. He, by giving it an intuitive

interpretation, showed that a narrow wavy belt, forming in the equatorial zone of

a shell of rotation with the loss of stability, is very close to the wavy L..lt forming

with the loss of stability in a cylindrical shell.

Later, Yu. N. Rabotnov constructed, in this setting, the general linear theozy

of stability called by him the theory of local stability of shells /V. 15].

V.Z. Vlasov has generalized the theory for the case of non-linear problems

10.4/.

From the above it follows that the lower critical load for a conical shell under

longitudinal compression is equal to the corresponding quantity for a cylindrical

shell of radius R c. Denoting that stress at the sections r = r 0 and r = r c by T0H
and THrespectively, we find from (40. 25)
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(5S.S)Re ' R. &

The minimal buckllng force pH acting perpendi,:ularly to the base plane, is

P" _ T_. 2nR0 cos _ 7 _ 1.18Et s cos 27. (56.9)

Hence it follows that the critical force which is borne by the shell does not depend

on its radius, but decreases rapidly with the increase of the cone angle.

One may analogously consider the question of determining the lower critical

load under longitudinal compression of other shells of zero Gaussian curvature

whose surface divides under buckling into a large number of shallow parts. Then o

making use of the concept of local stability, we set the principal radius of curva-

ture equal to its maximal value. In the case of a cylindrical shell of elliptic sec-

tion with small eccentricity, this radius is R = a 2/b, where a is the semi-major axis

of the ellipse and b is the semi-minor axis. Consequently, according to the formula

derived for a circular cylindrical shell, the modulus of the lower critical load is

i r.=I-_ o. ,57_ = o.ls7 E_'_b, (5S.10)
R a z

The corresponding value of the upper critical lo_d is

t r_ I = o.6_t,#/_'-.

with values of eccentricity

e--= _<:0,'_

(56.11)

This formula is in very good agreement with an analogous formula obtained by

l_. M. Mushtart /0o13/ by a more precise meth(<l (see formula (37.22}).

The contour length of a shell of small eccentricity is approximately equal to

2ha(I--e2/4). Consequently, the lower critical oad is given by the formula

(56.12)

Analogous quantities for a conical shell of ellipti,:section will be respectively,

iT,l=o,8,   co.fP.=,.i8,,.:-(,-',.)¢o,.,. ,,.,3,

The lower critical pressure under all-rounl compression of a short conical

shell may be also determined by starting in from equations (56.7) and subsequently

making use of the solution obtained earlier for the cylindrical shell. According

to (43.14) and the fulfillment of condition (43.13), it is necessary to introduce

the coefficient 0.88 for the determination of the v due of the lower critical pressure,

calculated according to the formulas of § $ 53-54. Here, one should not forget the

fact that formula (43.14) had been derived when o;dy one boundary condition, w = 0,

was satisfied, This state of affairs does not have a noticeable influence on the

value of the critical pressure, provided, as had been assumed in $ 43, the short

shell under consideration is one of the segments of a long shell, supported by
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intersticedtransverse ribs, weakly resistant to the rotation of the skin elements

and the displacements u and v in the tangent plane, since in that case the work of

the unbalanced contour forces on the transverse ribs at the ends will be small in

comparison with the deformation energy of the shell. For a conical shell too we

assume that it is_divided into equally stable short sections by transverse ribs of

the indicated type.
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Chapter XII:

THE STABILITY AND LARGE DEFLECTIONS OF

SHELLS OF REVOI UTION

S 57. The S'tability of the Axially SymmetrL: Membrane Equilibrium State

of a Shell of Revolution

We shall consider the equilibrium of a shell of constant thickness t, whose

middle surface o before the deformation is a surface of revolution. The position of
a point on a will be fixed by the intersection of tue parallel O = const with the

meridian fl = const, where 8 is the angle betwee:l the axis of revolution OZ and the

normal to the surface (Figure 38), R 2 = CM is the radius of curvature of the normal

section _ = const, Ri -- OzM is the radius of curvature of that section of the surface

= const which is a meridian of the surface of revolution. The line element of a

is given by (25.4), where da is a linear element of the meridian, and B is the radius

of the parallel. In the formulas of _ 25 the Gau_ sian coordinates u and _ are taken

as independent variables. To obtain the corresf onding relations in the coordinates

H and _, it is necessary to take into account that

da=Rjd6, B =P=stn0.

8(.._). 0c..) dg I O{.__) .
0_ 08 da R= _$

(57. i)

dO_d-["" /

o; I;---/

Figure 38

Let the part of the shell bounded by the parallels a = a o and a = a z be in equilibrium

under the action of a normal pressure p, uniformly distributed over the surface and

external meridional stresses uniformly distributed over the edge contours. It is

obvious that the state of equilibrium of the shell before the loss of stability will be

axially symmetrical. Neglecting the variations in curvature, we obtain from (25. 11)

and (25.12) the following equations for the membz ane stresses in the equilibrium

state:

_(srb- .,.,,B _+_ _p=o. (5'7.:z)

Assuming that at some critical load the stability cf the axially symmetrical state is
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lost and a large number of waves of infinitesimal amplitude are formed on the sur-

face, we obtain the equations of neutral equilibrium (25.26) and (25.27). The equa-

tions (25.26) can be satisfied, by allowing an error inherent in the theory of shallow

shells, if the additional stresses appearing with the loss of stability are expressed

in terms of the stress function N, according to formulas of the form of (25.32).

I O_k.4_ t OB O,_ T:_0%
i', =-_ _;__- _ _;, oo-_'

1 d2"_ t dB d_¢
(57.3)

To determine W and the additional deflection w we have the equation of compatibility
of the form (25.23) and the equilibrium equation (25. 12)

aa#+Et(k=xl+k,x,)_O, k,_-I/Ri,

D aa _ + 7,k,+ T=k,+ TI_.,+ T_x,= O. ¢57.4]

If withthe buckling the shell surface separates into a large number of parts, both in

the direction of the meridians and along the circumference of the parallels, then,

considering the local stability of the shell in the sense indicated in 5 56, we may

neglect the quantities _J and w in comparison with their derivatives, and also con=

sider the smoothly varying geometrical parameters B. k I, and k 2 as constant quan-
tifies. Thus, taking into account (24.13) and (25.24) and passing over to the vari-

ables H and _3 by means of (57.1), we shall obtain the approximate equations:

Et I Ozw -L 1 ds'w 0

D_-F
RtR,'sin'O d_ t-'R,_R, o_ R=' O0_-

r_ _ = o.
R=_sin=$ O_u (57.6)

Here fl is considered as a constant quantity, equal to the value at which the critical

stress will turn out to be minimal. Setting

_ A sin m (8 -- 80) cos n_, w _ C sin m 0-- %) cos n _, (57.7)

we satisfy the equations (57.5) and (57.6), if

A (mr =-t'- n,2) == -- CE t (k, mt _"-+-k, as'),

D (mr=q- a,=)'--]-TIm,' -_-T_ nt=-_-

+ Et(k,rn,=+ },rid)':(,n,'+ nJ)== 0,

where we have set

(57.8)

(57.9)

m, = m/R,, nt -- n/(R, sin 0), (57.1o)

If the shell has a vertex lying on the axis of symmetry, then from equations

(57.2) and (25.6) we obtain

Tl=-- t (57.11)_- p,Q,. rJ z rl (2 -- _), 6= R_JR_,

We shall first consider the special case of a spherical shell, under the action

of an external normal pressure p = const. Then

309 ORIGIHAL _'','..: _..

OF POOR QUALITY



-- rl = D (_,, -I- n,_)+ _t;[_' (m,, + n,')l. (5 _. lS)

r_=- 2 V -_ =- 0 6_,_for ,=0.3.

The last formula was obtained by Zoelly /KIll. 17/ and independently by L. S.

Leibenzon /XIII. 1 / by an exact integration of th,_ equations of neutral equilibrium

and the subsequent neglecting of quantities of the order of tlR in comparison with

unity. It should be noted that in the approximah, investigation of the question, one

had admitted the neglecting of quantities of the order of V_-R in comparison with

unity, and despite that the error in the value of :he critical stress turned out to be

a quantity of the order of t/R in comparison witL unity, as in the given problem

the expression for the critical stress has the form

-- TI=_z÷_÷ t/l÷ xl,

where _ is the tolerable error of the order of V_/-_. But

I _),-)-1,1÷_,=l÷k÷l--_,-i -),:..... 2_-k _-,

i.e., equating the expression in brackets to its n_nimal value, equal to 2, we toler-

ate, in effect, an error of the order of t/R,

In the general case, when the equations (57. II) are valid, the equation (57.9)

may be written in the form

E_ /_ -F" _--" )'_ = P'_- (5T.13)

whe re

_" = l/ rn,z+an,' ' _"_-,"_- 8' F_=--'n,'

The values of _.z and _, satisfying the equations #pldxj = O, dp/d_,--O, correspond to

the critical pressure. The first of these equatlors leads to _z = 1. Further

_p _,a,, _ (a)

Thus, the minimum of p with respect to_ is reached only with _,= I, for _.2 = I.

Such is the case, for example, for an elllpsoidal _hell under an external normal

pressure p, the shell being formed by the rotatior of an ellipse with semi-axes a

and b about the axis 2b. The principal radii of cu-vature of such an e11ipsoid are

R, I= a_b, Rs _ (57.14)
(alsfnS# + _t COS_9)*i, ' (as, 1'Z$1D.._ _tCo$1O)lh "

Consequently. for it

x sins 0 _l
_-i+(o,-_)-F-,r:=- __. (57.z5)

With _= 0and 9 = _ we have 5= I, R 1 = R 2 : R= a2/b. It is obvious thatthe

neighborhoods of these so-called spherical points (f shells of revolution are the

moot unstable ff the shell is oblate (a > b). Here f_ rmula (57.13) is transformed

into the formula (57.12) for a spherical shell of radius R = a2/b. i.e.,
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p*"_ 1.2Et_b_/a ' for v =0.3. (57. 16)

If the shell is elongated along the axis, i.e., b>a, then 0<1 everywhere with

the exception of the poles. Then, according to (a) the external pressure increases

monotonically with the increase in/_, and therefore for the critical value of p one

should take the smallest of its admissable values. Assuming that _ << I, mla<<_ n, _,

we find kz,=B/(2--_). Here the quantity _.z/R_ has the smallest value at the point

= _/2. Hence it follows that an ellipsoid of revolution, elongated along the axis,

loses its stability in the equatorial zone where, according to formula (57. 13), the
critical external pressure is

2 JE'a _ I 1,2gla
pk= 1/5(t--_=) (2 ---%)a_- ll-.¢z "="2b' -- == " (57. 17)

If a shell in the form of an oblate ellipsoid of revolution is under the action of

an inside pressure (p<0), then, as can be seen from (57. 13), the meridional stress-

es in it are tensile (T[> 0)but the annular stresses are compressive (T[_ < 0) for

0>2 or, according to (57. 15), (a 2-b2)sin 2 {}>b 2. The quantity _ reaches it maximum

at 8 = _/2, i.e., at the equator. Here the meridional tensile stress has the small-

est value and the annular compressive stress has the greatest of all possible abso-

lute values. Consequently, if in the case under consideration the phenomenon of

loss of stability is possible, then the first buckles should form along the equator.
Thus, let

O=x/2, b=a_-/b ', Rz=a. (57. is)

As can be seen from (57. 13), for p<0 we ought to have _2<0. At the same time,

> 1 and according to formula (a) c)p/dl,.<O, i.e., as p increases the negative
quantity p should decrease, and therefore with the increase of/_ it increases in ab-

solute value. Then to the critical pressure corresponds the smallest of the possible

values of/_: .u_<< I. Thus, we have again obtained formula (57. 17), which in the

case of inside pressure is applicable for a>b. This formula had been obtained by

us in another way in /VI. 1/. It differs considerably from the erroneous formula of

I.V. Gekkeler /XIII. 18/, in the derivation of which the buckling zone had been con-

sidered as a compressed ring upon an elastic base, where the coefficient of flexibi-

lity of the base had been determined incorrectly.

We shall further consider a truncated shell of revolution, bounded by the edge
sections

8=00and 0==--a0, (57. 19)

which is in equilibrium under the action of contour stresses Pt only. In that case,
using the relation (25.6), or

RI cos _ = _ (Rasln e), (57. 20)

we find expressions for the stresses before the loss of stability from equations

(57.2), for p = O

7"]-- p, ROsin 100/R= sin' O; FI = --pl/_sin t IolRI sin 7 o. (57.2 0a)

Introducing them in equation (57. 9), we obtain

(57.21)
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where _I has the same value as in formula (57.L3),

If the shell has a positive Gaussian curvature, then

cal compressive stress _l,n:=0, ),._=-- 1

at the edges, where sin 2 B has minimum value.

:> 0, #x_/d_ _0 and at the criti=

Besides, the stability loss starts

Thus, in that case

2 DV_ff_ _?._ == R, (00) (57.22)
pt_ --_ R_-- '

If the Gaussian curvature of the shell is negative, then _O,d_,_/d_O. But as

can be seen from the expression for the quantity _I, with 0_p_[_[ we initially

have _1 < 0; therefore, Pl < 0, if A2 > 0, where with the increase in _ the quantity

_2, and therefore also IPI[ at _I = I, decreases. With p= --Swe have _2 = 0 and

_I = _ , i.e., one obtains an indeterminate result, which, however, is easily de-

termined if one returns to the initial expression for Pl. Thus, for

_= m2R 2 sin2,/n2R_ = -5 we have

R#sm' to _ DR_ n_ _(l_ _)_° = D_ -__1 - _)_ (57.23)
pz sin_ O t_-- _ 2R: sinz 0 $

The smallest absolute stress is reached with n - 2. In particular, for a

shell described along a catenoid, _= R2/R 1 = --I and with 8 = 00 we have

p_, = -- 2 E_" : [R_' sin _% _]. (57.24)

The absolute value of this quantity turns out to be R _It times the critical compres-

sive stress for a shell of positive Gaussian curvature, determined according _:o

(57.22). There according to (57.8) we have A-- 0 for_ = --_, i.e., the buclding_f

the shell occurs as a pure bending. Such a deformation, as is known from the theory

of surfaces, can occur only in the case when the edge contours are entirely free.

If, then, at the edges, the conditions

_=0, T,=0, M_O for 0= 0o and 0_--0o. (57.25}

ought to be satisfied, then in the expressions (_7.7) it is necessary to set

m = i =/_ -- 2 _0, _- integer. (57.26)

Since _t _he minimal load without the fulfillment of the boundar_ conditions, n = 2,2 2 . 2 _. 2 2
= m R2sm .In RI = --_, i.e.. in the case o the catenoid R2 = IR_, _= --1,

musing0 = 4, then aiso ff the conditions (57.26) are satisfied, one has to take for

m (in order not to depart too much from the ab+olute minlmum of ]Pt [) the smallest

of the possible values determined from (57.24) setting i = 1. Thus,

m_=/=-- 21)o, n_,_, _ -- i. (57.27)

But when m and n are quantities of the order ot unity, the theory of local stability

is inapplicable, as the derivatives of _ and w _re quantities of the same order as

the functions themselves, and therefore formula (57.24) can lead to quite an erro-

neous result. For example, as is shown by th_ thorough analysis carried out by

N.A. Alumyae/XIIL 19/, the actuai value of the critical compressive stress at the

equator of a long catenoid is
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Ir[lo 2.6_ Et _t/R) 'h, ., = L/3, (57.28)

where R is the radius of the equator. However, the investigation carried out

above on the stability of shells with negative Gaussian curvature shows, never-

theless, that the latter are less stable than shells with positive Gaussian curvature.
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ORIGINAL U'i i __,

OF POOR QUAL ,_'_='

$.58. The Axially Symmetric Deforw_ation of a Shallow Shell of

Revolution under Large Deflections

In equations (25.6), (25.9), (25. 11)-(25. 13), and (25.33), we drop the index

• I" and denote by r the distance of a point on the middle surface from the axis of

revolution, and by 5--just as before--the arc distance measured from the pole along

the meridian. We thus obtain

__ d_. d,- (58. I)
dr d_t' rz, _ .....

B=r, (rk2):kL_. xl=-- d_' ' d* d='

d(rTl)= T= dr T= = 1 drd:, Tz=d _ (58. 2);=' -; =-==-_" d=,'

} ( _=, , d=d= -; ==' _-- O. (58. 3)

-_- Tz(k=-- I _rd=\
(58.4)

Let us consider a shallow part of the she 1 in the neighborhood of the pole and

let the solid angle 26t subtended by that part ol the shell be small. Then, taking

into account that da = Rid0, r = Rzsin 0, and ttat according to (58. I)

we find

d(rk:)=kzdr, cosOd_=k=dr,

dr _ l_,.cos e dO = cos O da == d_=.

Consequently, in the preceding equations the derivatives with respect to (z

may be replaced by derlvatlves with respect to r. Then

dr�d= ._ l

and using (58.1) and (58.2) the equations (58.3_ and (58.4) may be integrated once.

Thus, we obtain the equations

I dw 2,-"+ - +
dr t dr

d 1 d dw dw .jf p_rLj(_ C, =0.
Or_[7_,(r_)]q-T,r=k, - T, _ . (58.6)

As at the I>_le r= 0, dw/dr = --rxZ= 0, .l/dr(T1 + T z) _ _, and hence C = 0.

In a similar way we convince ourselves that C' = 0.

In what follows, we shall confine ourselves to the investigation of the equili-

brium of a shallow spherical segment under the, = action of a uniformly distributed

external pressure p. Let the radius of the base annulus of the segment be a.

We introduce the notations
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o (58.7)

Then from (58.5) and (58.6) we obtain, using (58.2), the equations*

p-_[±-_(p_)]=_-O,-e_ _._, (58.8)
4,_L p dp J 2 '

Further, from (25.10), (58.1), and (58.2), we obtain expressions for the

radial bending moment, radial stress, and peripheral elongation:

Et_ • dqP (58.10)
M, ffi - -;- \_ ', , r_ --- - --'e ,2 = v--p - _dp

We shall consider the generalized boundary conditions, assuming that the

shell has elastically flexible fastenings at the contour.

We shall take the bending moment M 1 along the contour as proportional to the
angle of rotation _x of the contour of the shell

(58. 11)
d_v for r/a ,-- 1.

where ;_tts the constant of proportionality.

Hence, using the expression for M z from (58. 10), we obtain the first boundary
condition _:

+,,,0,=0, ,,,-,+¼, c,-a. (58.dp]_.,l a_i

Here C z is the characteristic of flexibility to rotation of the support fastening.

With a hinged fastening C 1 ffi _, with the absence of rotation on the contour C 1 ffi 0.

We shall consider the stress T z at the contour to be proportional to the dis-

placement u at the contour, 1. e.,

Tl=l:u for p=l, (58. 13)

where _2is the constant of proportionality.

In the case of axially symmetrical deformation the annular elongation e z i$

determined by the formula

,, = V+-_.

At the contour, let the condition

_v=0 for p_l. (58. 14)

be satisfied. Then

u_a._ for p_ 1.

See /XIII. 23/, /XIH. 6, and /0.19/.
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Consequently, using the expression for 8 z from :58.10), we bring the boundary con-

dition (58. 13) into the form*

(_-)..(-F n(¢)_ =0, n .... C_; C+----- z'
(58. 15)

The quantity C 2 above is called the characteristic of flexibility to displace-

ment of the support fastening.

If the support contour does not hinder the displacements u, then C 2 ffi _; if at

the contour u - 0, then Cz ffi 0.

Apart from the boundary conditions (58. 12!, (58. 14), and (58. 15), owing to the

axial symmetry we have

8_0 for p=0 (58.16)

One can satisfy all the boundary conditions relating to deflection by setting in

the first approximation

8=R_-_(p+--v,p), ,,=_., (58.17)

where m is a constant yet to be determined.

Introducing this expression into the equation (58.8) and integrating twice, we

obtain _), where the constants of integration are determined from condition (58.15)

and from the condition of the boundedness of the solution at the point 0 = 0. After

substituting the • so obtained and the expresslor (58.17) in equation (58.9), we In-

tegrate it by the Ga_erkin method. For this we multiply the left-hand member of

the equation by _) do and equate to zero the integral between the limits 0 and 1 of

the expression obtained. Thus we obtain a cubic equation in m:

sl®' -1-sz®*+ s_ = t_p.

where

I 1 (n_,¢-F vl) 'q "[
114 ": t 3 • z 2VI.-L=--_'_. ---_-T] ' -- _'" _-_ j'

$1

1 F 5 ,5 -- 19 z (_'. -I-vf) _,.4-(n,i + 'a)', ],
.i

lO 2 2 1 +n J

v+=5--9,1, _=1--3,_, ,_=7--20v,-t-18,* 2,

,, =.=._---_-,,-t-Vl I, '_= |-- 4'I t _, z-

(58. z8)

(58.19)

From (58. '/) we have

O-- _ , . = a I Odp _- const.

* In /VI. 7/ th_l condition is written in an erroneous_ form, and therefore in the

expression for n the sign obtained for C 2 is incorrect.

318



At the shell contour, with 0 ffi 1o the deflection is zero; consequently

I p

const =- a/Sdp, w--aySdp.

o l

The relative deflection _ of the center of the segment is given by the formula

li )lI_l = Ode =g --v_ ®

(58.20)

The extremum condition for the pressure has the form

-_- d_:_._____O, _.dP=0.
(sa. st)

Substituting in this equation the expression for p in terms of o) from the equa-

tion (58. 18), we obtain the values of m corresponding to the extremal values of the
load

-s,- V s,=-._,s= -_ + _ (58.22)

As

". "-!.=- <0,or....dw= _, _4= J '

Consequently the value .) = (')I corresponds to the maximal value of pressure p_aX.

Therefore,

p.=,_= s_,.,,+ _ =,,+ =:.,, p===_,+ ._=,,+__®,. (s8.23)
34 -- St $4 3i

The dependence of p on r,} Is shown in Figure 39.

0

f
IO_d Iw# I_.ujI

Figure 39

As can be seen from the graph, after reaching the pressure p_U • the further

increase in the quantity I"' I from I'.1 to I,,,J uccur, discontinuously (by a bang),
t. e., there is an instantaneous loss o_f stability. If, after this, one reduces the

pressure, then the deflection is gradually reduced and the value of I e_ I decreases

from [(",[ to [o,_. When the pressure becomes p_", the bent form of equlllbrium

becomes unstable for (,) = (')z and collapse occurs (from the position D to the poSi-
tion E).

317



Following the terminology proposed in the _rticle of G.A. Geniev and N. S.

Chausov /VI. 7/, we shall call the buckling (twisting) of the shell at pK _x the loss
of stability of the second kind.

But it can occur that already for p<p_U the shell loses stability of its axially

symmetrical state and passes into a moment stale, which is usually not axially sym-
metrical. Thls phenomenon is called the stabl11_y loss of the first kind. The corre-

sponding critical pressure is given by the formu:a

? El=
P'= _ _ '

in the derivation of which it is assumed that the radius of the shell does not change
under loading. In practice, in the case of a shallow segment even before the loss

of stability of the axially symmetrical state of equilibrium there is a considerable

increase in the radius of curvature of the shell, :n particular near the pole, due to

which at the instant of buckling the radius of cu_'ature of the shell at the pole is

equal to some quantity RK>R , and the preceding formula should be expressed in
the form

2 r t, (58.24)

where RKis the radius of curvature of the deforlx, ed shell at p = PK"

Attention has been drawn to this fact in /VI. 7/, where it is proposed to deter-

mine R x from the formula

R,_ ,,,+H_ , H==H- I ='o_I.
2/]=

Here H is the initial altitude of the segment and (WOK) is the deflection of the pole

under critical load. It is obvious that in this wa] we find an average value of the
radius of curvature of the deformed surface, whereas the radius of curvature in

the neighborhood of the pole is greater than this quantity.

According to the theory of local stability, the stabLlity loss of the first kind

in a complete shell should start precisely in the region of the pole, and therefore,

by substituting in (58.24) the indicated m.=an value of the radius of curvature instead

of RK, we shall obtain a larger value of p K. Taking into account that with the sta-

bility loss of the first kind small waves are form.=d--the length of each of which con-

stitutes only a part of the quantity 2a--and that near the pole the curvature changes

slowly*, we propose to take as RKthe radius of curvature of the deformed shell

with 0 = 0. Here, for the type of deformation colsidered, we shall obtain a some-

what smaller value of PK-

From (58.1) and (58.17) we obtain

x== (3p_ - ,_), L=_ = 'l •

Consequently,

____(] J + ,,®), P.== 2E_ (I +v.m) I.R.-_ -_ _ a.

e

(58.25)

For example, with hinged fastening vt=2.540 if v • 0.3, and in the expression
for x I the term 3 Q zis considerably smaller titan the constallt part, even for

0 = 112.
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Equating the value of PK to the value of p given by (58.18), we obtain an equa-

tion analogous to that used in /VI. 7/:

(58.26)

Calculations show that one can neglect the first term of the left-hand member

of this equation. Thus, to determine the value of c,_= (,)x(and therefore also that

of the deflection woe for which loss of stability of the first kind occurs) we have a

quadratic equation. Substituting for "_K TM (58. 25), we obtain PK" If it turns out

that the values of _K are complex, then stability loss will be of the second kind.

The computations carried out show that the critical maximum pressure deter-
mined from (58.25) or (58.24), is half or one-thlrd the critical pressure found

from the formula of Zoelly and Lelbenzon. initial irregularities in the shell shape

also exert a very strong influence on the critical pressure in the case of a stability
loss of the first kind.

We shall consider here the approximate determination of the critical pressure

for a shallow spherical segment on the assumption that the segment has a symmetri-

cal initial dent with respect to the pole, whose depth is f0 at the pole, and the radius

of whose circumference is a0. When such a dent exists, the radius of curvature of

the segment near the pole will be greater than away from it; therefore, a local sta-

bility loss of that region is possible, provided the diameter of the dent is not small-

er than the wavelength of the anticipated buckling which is nearly symmetrical with

respect to the pole, and is of an infinitesimal amplitude.

In equation (57. 9) we setn2< m 2, k = k = I/R , where R isthe radius

of curvature of the dent region at the instan_ of btucldin_starts, anaKobtaln

_ yl Dm s _ £t

From the condition aTII/@m = 0 we find

=: =l/_. l_(] -,')/t'.

But the length of the expected wave, as is apparent from (5?. 7), is

2=R,/m,=-2_}/-_-_t:_ - ,%

Consequently,

ao=,V-_-_,tl_12(l--,').

Let f be the altitude of the segment of radius a0 without considering the dent,

i. e.

The actual altitude of that segment before applying the load is approximately

#a,'t2R)-/o.

Consequently, its curvature may be obtained from the formula
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At the instant of buckling, the curvature of _.hesegment changes owing to the

applied pressure (PK) to the value

=,(p= O)= =vdR.

Thus, the curvature of the pole region at th; instant of buckling will be

Consequently,

l I 210-4-.v, 1 ÷ __.

2 _t'¸

P"= _ _= " (58.27)

Here as before we find the quantity ._ = ,_K from equation (58.26). The utiZi-
zation of the last equation for the determination o; the deflection due to the load for

a segment with an initial dent should not lead to a considerable error, since for a

shallow shell the deflection of the pole will be due not so much to the bending in the

dent region as to the general bend ing of the entire shell with the given boundary
conditions.

The solutlon given here was obtained in the first approximation. Making it

more exact by approximating the quantity i_by polynomials of higher degrees than

(58. 17), we shall obtain smaller values of the upp_.r critical pressure. The limit-

ing value PK differs, as some calculations show, !rom the first approximation by

10-20% if one limits oneself to axlally symmetric=_,l deformations. The solution of

the non-linear, non-axlaL1y symmetrical problem is so far unknown to us, and

therefore, at the present state of the theory it is risky to carry out stability calcu-

lations for shallow spherical shells without experimental verification. To our re-

gret, in the literature there are no data on serious experimental investigations of

shallow spherical domes. We did not manage, so far, to acquaint ourselves with

the recently-published work of this kind /XIIL 13/ In work /XIII. 14/, known to us,

the experiments were carried out on spherical domes of considerable depth, with

base diameters of 2a = 40 cmo radii of curvature R = 25 cm and R = 52 cm, and

thicknesses varying between the limits 400<R/t<2.000. For the critical pressure

at which the dome loses stability the authors of th tt investigation obtained the empirt-
ca3 formula

03= _t-_-a(4_O_ _-_2000, 20_o°_60°>,

-
where 8o is the rise angle in degrees at the edges, where the maximum discrepancy

between the authors _ experimental data and the re,,_ultscalculated according to that

formula reached 20% (in those cases when deviations from the ideal spherical shape

were noticeable to the naked eye).

At the boundary of the region of applicabilit) of the empirical formula, _ = 20*

We shall apply the above theory to the deterzalnation of the critical pressure
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in such a shell. Let us take the data:

a_2Oc.m, R=,c52cm, _--_-.800, v_0.3; E=2.1"lOIl'.g/em 2.

It turns out that in this case symmetrical loss of stability of the second kind

can occur only under very large pressures.

The critical curvature at the stability loss of the first kind is

,,-r'.:

Hence with f. = 0, from (58.24) we find PK ffi I'16Et2/R2 and with fo = 1.5t we find

PK = 0,28Et2_R2"

At the same time, according to (58.28) PK ffi 0.258Et2/R2" Thus, even with

an initial bending equal to 1.5t, our theoretical solution gives a somewhat higher

critical pressure than its experimental value. This discrepancy may be partially

accounted for by deficiencies in the experiment, as in work /XHI. 14/ it turns out
that in some cases the initial irregularities were clearly noticeable to the naked

eye. But the main reason lies, apparently, in the fact that the shells tested were

rather deep, whose stability loss cannot occur in the axially symmetrical form if

there are no large axially symmetrical irregularities.

The testing of two series of shallower segments has been carried out by R. G.

Surkin in the mechanics department of the Kazan' section of the USSR Academy of

Sciences. The segments were portions of a sphere with the diameter of the base

ring 2a = 200 mm; the mean values of the radius of curvature of the surface and
of the thickness were: for the first series with seven shells tested, R = 358 mm

and t = 0.454 ram; for the second series with four shells R = 495 mm and t = 0.460

ram. The samples of both series were prepared by hydraulic stretching of sheet

brass (E = 106kg/cm2).

In the preparation of the shells, circular symmetry was well preserved.

All the specimens tested lost stability abruptly under loading, i. e., by snap-

ping. Then there occurred a complete inversion of the spherical segment with some

additional stretching as a result of the high speed of the inversion.

As a result of the experiment, the mean value of the critical pressure for the

first series turned out to be p_ = 0.787 atm, which is 2/5 times the value of the

critical pressure according to the linear theory, and for the second series

p = 0.374 atm, i.e., 5/14 times the value of the critical pressure according to

the linear theory.

The calculated results and experimental data are given in Table XVIII for

v = 0.3.
Table XVIII

No

of the

series

I

II

t

in mm

0.454

0.460

R .I f0 R K accord-
in mm in mm ing to

(58.27)

358 --0.144 0.049 605

495 --0.139 0.057 828

PK accord-

ing to
(58.25)

in atm

0.767

0.438

PK accord- PK
ing to in

(58.27) atm

in atm

0.683 0.787

0.374 0.374
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A comparison between the theoretlcal value_, of the crltlcal pressure taking

into account the initial irregularities according to (28.27), and the experimental

values, shows that in the given case theory and experiment are in satisfactory

agreement.

In conclusion, we draw the readerts attentica to the article of Hu Hai-Chang

/XIII. 25/ in which he considers the stability of a Zinged shallow spherical segment

whose polar region is loaded by a symmetrically cistributed normal pressure, and

also gives a detailed investigation of the stability of such a segment under the action

of bending moments uniformly distributed over the contour, where in both cases

the deformation is assumed to be axially symmetrical.
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OF POOR QUALITY

S 59. Shallow Spherical Membrane trader the Action of Internal Pressure

The exact solution of the problem of determining large deflections of an ab-

solutely flexible spherical membrane, whose rigidity to bending may be neglected,

was given in works /XIII. 8/ and /XIII. 15[.

_t_/_2 -_, e_ I tim I dlt' Ik= --. (59.1)
2r dr a_ d_ ' R

Equations (58.5) and (58.6), in which one should set C = C' = 0, take the form

Z fl_CT,+T=)=Et{=k--=:), =_-- q-%. (59.2)
== a¢] 2 4T=

According to (58.2) and (59.1)

T==_r(rTj), Tj+ T==2dt _(_T_)"

Introducing this expression and eliminating m from (59.2), we obtain

_(_T,}=Et( k'- 'J' _.
a t _a \4 ]6Tzl

Setting

_=' = ' _ l (Eq%_t)'r,_, (59.3)iz* = E -4-- (EqZa_/t )- I,, Tz

we bring the last equation into the form of the non-linear differential equation in

of:

(_o,)- 2k* +2, = o. (59.4)
_t =l

We shall seek the solution of this equation in the form of the power series

o, = b0 + b,_ + .... _ b._'. (59.5)

We shall assume that this series converges in the region 0 _ { _ I, and that its sum

satisfies the necessary boundary conditions. Let

=: _= = b,_+ b_ = + .... _b.l'_L (59.6)

Here (59.4) may be written in the form of the equation

"/--_-= 2k* -- 21_/X =.
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Integrating that equation once, we find

L

Here c = b0, so that according to (59.6)

_z = b0 for

Besides

" 2

where

L

co=l. d$_co =. cl-t-_:_.jci-nb._Ofori_[,

_---:-Z(3n--rn)cnd .... f)r _rt _ ].

Introducing these expressions in (59.7) and integ "ating, we obtain

Q

boz_j(_ + Zj(n +2)

Equating the series (59.10) and (59.5) we obtain the relations

b_=k *-d-_° b:_ d, b_ 2#,-_
bla ' 3bol ' .... bo2i (i + I )

Further, from formulas (59.9) we calculate the c )efficlents

b] bo 2

d== --2 (2bt =__ 3bob=b2 -_- b0=bj).
)a |

Introducing these in (59.11) we obtain

bo2 ' 3 b,_ ' lSbo t " '" '

where

_,= k*bo =

is proportional to the curvature of the spherical membrane. Thus,

cording to (59.5) and (59.13) T 1 is expressed in terms of b 0 and _.

(59.7)

(59.8)

(59.9)

(59.10)

(59.11)

(59.12)

(59.13)

(59.14)

ac-
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He re

d TzT= = ( ).rT,_-_- Tz q-_2E-- -----

= - _ _q,a,t[bo+ 30?.+...-t- (2i+ 1)b,=,,+.. 4.
4

OF PGOi,_ Qd,:,LilY

(59.15)

To determine the deflection function w, we make use of equation (59.2), whichbyuse

means of (59.1) and (59.3) is brought into the form

Introducing here the expression (59.5), integrating with respect to _, and setting

we obtain

I [(bL := -- 2 bib, __a= = -- _- ",bo* b="--'F ' (59.16)

The constant of integration w o is equal to the deflection oft he center of the membrane,

i.e., w = w 0 for _ = 0. On the other hand, let the membrane contour be clamped,
i. eo, w = 0 for _ = I.

Consequently,

o

2 -- F Et #=_o '

n-o n=o

(59.17)

At _ = 0 the series (59.10) converges to the value of b 0, where b 0 > 0 should

hold, as T 1 is the tensile stress.

In the general case

12 "

where

(i + I) (i -'1- 2) (n -f- 2)'-(n +

i=u--i l=nt_l

On the other hand

e n •

i,¢l #-o i--_l.-Pt
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Consequently,

For _ = 1, this gives an estimate of the residual term

2IR.(UI'< _--_,_- a, :1(,_+21(,=-t-3)1. o,,= b,.
i-o #.=.0

(59.la)

In what follows we shall carry out the calculations by limiting ourselves to four

terms of the series (59.5) or (59.10). The estimate of the residual term of the

series according to (59. 18) shows that the error +hus admitted is not large if _<1.

The remaining undetermined coefficient b 0 may b.• found from the condition that the

annular elongation _2be zero at the edge _ = 1.

This gives the dependence

T=--vT, =0 for I == 1,

which after the substitution of the expressions for T t and T2 from (59. 13) is reduced

to the equation

(11__) b0' -- (3 -- _) b+* -- _3 (5 - v) bu8 --

(7 -!) (t3 --91.)=0
18 (59.19)

Some results calculated according to these formu:as are given for v = 0.3 in Table

XL_.

_ lb, I -b_ ( -b=

Table XIX

l
0 1.713 | 0,341 0.0452

0.4 1 .,,N)0 l 0.260 0.04930,9 1 ._2 0,09B 0,0628

l l_io.+lo+[o0 0 I0 0.t_16 0.I73

0.0:47 0.002I 0.879

We determine the stresses Tt0, T2o at the (enter and the stresses T l=, T2=

at the edge from the formulas

The numerical results

Tlo = T=o= _- Q, Q = (Eq _¢+t)'to,

$ a

#,-o #-o

3

=+=-- -+a m (59.20)

found from these formulas are summarized in Table XX.
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0 O.428 O. 328 O. 662
0.2 0,409 0,321 0,952
0.4 0.375 0,292 I. 157
O. 6 0.,_'40 O. 267 I. 386
0.8 0.291 O. 23_3 1.706
0.9 0.253 0.206 2.006

Table XX

From this table it follows that with increasing k* the stresses at the center

and at the edge of the spherical membrane decrease.

In the special case when k'_ = 0, i.e. , k = 0, we obtain the well-known solution

of G. Genki for a flat membrane with a uniformly distributed load (see, for example,

/XIII. 24/. Calculations carried out by S.A. Alekseev /XIII. 26/, have shown that

the influence of the coefficient of transverse compression v on the value of the de-

flection and stresses is quite considerable.
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$ 60. Making the C_neral Theory d _ll-Snap More Accurate

The theory of shallow shells which we have used from $ 17 Is based on the

assumption that the condition 002 _ 1 i8 satisfied, where O0 is the rise angle of the

part of the shell considered. The lo88 of etabJ_ty of non*shallow shells is frequent-

ly accompanied by a dent. corresponding to a body angle 200. This can be consid-

ered as small only in the first approximation. For example, E. Zechler and V.

Bolley of the California Institute of Tedmologyo while testing hemispherical shells

under the action of an external uniformly distributed pressure p have found that

_-0.is,_, _._0_ L"_==2.5, (60. I)

where I wo [ is the dent depth and o _ is the critical stress. Already in this case the

appUcation of the theory of shallow shells for the determination of elongations of

the middle surface may lead, each time the stress functions, etc. are introduced

to an error exceeding 2%. and therefore the total possible error of the solutlon will

considerably exceed the error admlssable in the ".hepry of small deformation of

this shells which, an was shown above, in a qmm-=ity of the order of the relative

elongation ep(within the limits of elasticity), in (omparlson with unity.

At the same time, there in a tendency to b_oaden the range of applicabllity of

the above theory of shallow shells, allowing a sh_ 11 to be called shallow if

x • _: t %_ ;. (60. 2)_.=___ _ or

In $ 26 it had been noted that at the boundary of the region (60. 2) the admissible

error in the theory of shallow ahells can be very considerable. Here, we shall con-

sider this question in great deta/1, fixing oar attention on the possible loss of pre-

cision in the determination of elongations for a medium deflection, which was al-

ready pointed out in $ 15.

We shall refer the middle surface of the 8h .=ll to the lines of curvature. Let

a line element of that surface he defined by the fcrmula

a._.t= A=am-t-_=_ (60.3)

where A and B are quantities of the same order =e the radii of curvature of the she11.

For small deformations with arbitrary dis[ lacemente, the elongation and shear

of the m/ddie surface are given by (3.5):

=,=e= + _-(e,=+ _,,+._,), (60. 4)., =,r,,+ _ (_, + _=+-_.

* See article /XID.. 7/.
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•.-- (1 + e.)eu +(l + e=)e. +,,,-,.

t __4 t____A_I_- i a= . 8B

1 8m • !,_

(60.5)

Unfortunately, the expressions (60.4) contain squares of the normal as well as the

tangential components of displacement, They may be somewhat aimplJ.fied ff the

displacement components are comparable with the shell thickness, but are small in

comparison with the other linear dimensic_s, Let the shell be thin, i, e,0

_ e.. (60.6)

For ordinary metals

ep _ 0.001 -- 0.003.

As can be seen from (60.1)

!'_'-,-'_ o.-.._.. (60.7)
t • •

Since in the snapping phenomenon weare deaUng with displacements and stresses which

attenuate rapidly from the center of the region toward its edges (the radius of the

region being small), then according to (60. 7)

01_lO0 I:l_ iw 1,_% IwlR___R_ : --_--_ I_[ P_J . L--z'-R "'

] /_%z l [¢)m%Z

,,,to-) ,_i,.) "

As has been shown in $ 150 the tangential displacement components are small in

comparison with w. If0 for example, uzw_/3 then

'_= '_'-'*"- - _:,, _ (60.s)

Thus. _I, _2, _12may be differences of quantities °f the °rder of s_ There-

fore in determining the elongations there may be a loss pf precision if one is not

careful in retaining quantities of higher orders of magnitude.

From (60.4) it follows that

.,,= ,_v,_" _o+.,-'_.: ...
z z =

Consequently. as

then. neglecting _p in com_x_ison with unity, we find

1.2,

,,-_e,, + _e,_ + _,_ -I- _ ",,
1.2 (60.9)
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Further, according to (60.8) and (60. 5) we have

7 e_,- _

Taking into account that

in the first approximation we may take

ifv = 0at _= 0.

• 0p R: 0 (80.10)

Consequently, with the assumed accuracy

Now we have

p
I rlw I C Bwd[_ --"

(60.11)

P

"a=(_" _'/ ___, O,oj & - .... (7 "_) .... (60.12)

Let e{l _ ...,, ,_ ,be the respective quantities fo: the state of the shell before snap-
ping. rt. e2. tia the elongations in the buckled state, and u, v. w the additional

displacements. Then

Assuming that the first equilibrium state may be considered as close to the mem-

brane state we have

* I * t

If, besides the principal equilibrium state, a stable equilibrium state under

the same external load is possible after the snapping, then the total energy of snap-

ping must also be minimal in the latter position. Thus, the problem is reduced to
the minimization of the functional

I , 1

3 =fj-{_[( .,,+,,). +( .',+.#+ :.( .I +.,) ( .....)-,-
q.I

+_k_:'m( .I.+,,#]+ _ f ,,' " ,1,4]t L+ _"}+ 2' :xx_ -_" 2 ( l

-. W} ABded_

K=Et/(I--v_), D_Ets/ 2(1--',:). (80.13}

Here the integral is taken over the entire middle surface of the shell; W is the spe-
cific work of the external surface forces; the wo-k of the contour external forces

is considered to be zero.

We determine the changes in curvature from the formulas

33O
OR .......
OF POOi_ _ _ : _ " . r



_1=_-_ _ % " _'z=A 0_ _e ap _' _--- (60.14)

The elongations are expressed linearly in terms of u and v with the aid of (60. 10),

and therefore the latter enter in the expression for the total energy in a power not

higher than the second. Due to this one obtains, in minimizing the energy, equa-

tions which are linear in the amplitude of the tangential displacement.
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§ 61. The Lower Critical Pressure for a Complete Spherical Shell

The upper critical stress for an ideal spherical shell under uniform external

pressure is given by the formula

a -- pUR _ Et (61. I)
u-T-_'

It is almost four times greater than the experimental value (60. I).

In putting forward their explanation of the discrepancy between experiment

and the classical theory, Th. von Karman and Haue Shen-Tsien made the assumption

/XIII. 2/ that when pressures are considerably smaller than Pu, then besides the

state of stable equilibrium of the shell, there is posslble a stable equilibrium state

which retains the spherical shape with the forme, tion of a dent; also, a "jump n or

"snap" into that buckled state is possible if the shape of the shell is imperfect or if

the applied pressure is pulsating. However, these authors did not succeed in giving

a satisfactory solution to the problem of determ ning the minimum pressure in a
non-linear state. K.O. Friedrichs also had to admit, at the end of his work /XIII. 4/

devoted to that topic, that the question of the mi-limum pressure, called the lower

critical point PH, remains open. In the exposition of this question we shall follow

our article /XIII. 7/.

We shall take the center of the snap regiol, as the pole of the spherical shell

and meridians and parallels for the coordinate 1.nes. Then in the formulas of the

preceding section

.4 = R, B = R sin e, ,_= ,,_= °' = w'/R; ,_ _ O.

Let the snapping be symmetrical with respect t¢ the pole. Consequently,

'_=0..,. ..... e,,=e,z=O .... _('_- *v#):R;

d_tv
,z -- e_s -- _! (uctg_-_-w), u={Ra2 -_)tgO, .,-.._--d_, ' (81.2)

R R tO , _ "

No loss of precision can occur in the dete:,mination of the work of the exter-

nELlforces because, limiting ourselves to the fizst approximation and setting

sin 0=8, cos 0=1, we have

W-- (w-l- a I R).

For quantities depending only on uniform compr,_sslon, _ varies between 0 and _.

Quantities characterizing snapping can be different from zero only in the

region 0 < 0 _<_0, and therefore according to (6G 13)
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$ 'ill---- K(l.._v)t'=R'slntJa_-{ - K T(t,+,l-]'-2v',':)+
o o

Jr d_ dO R_d8

We assume that

,.,=0, '=,=0, _--_=0 for O=Oo.
de

(61.3)

This is equivalent to the assumption of a rigid annulus at the boundary of the expect-

ed snap?ing region. According to the symmetry conditions we have

u=O, _ =0 for 6=0. (61.4)

Besides, one may set

l 2

i ®)- 7 ....

Consequently,

2=

• ,) ,i /aw\_.4;_D F/d_-_\_- (6z.s)

The total energy in the first form of equilibrium is

3 _= -- 4rK(l l-')R ''_'_

The equilibrium state is stable if the energyfunctional )in that state has a minimal

value. The equilibrium state before the snap (zero state) is stable if p< Pu. As
was shown in /XIII. 2], other stable states of equilibrium are also possible if the

pressure exceeds some minimal value PH, where pH < PU" It is obvious that with

P > PH there are at least three possible equilibrium states: a stable "zero state",
a stable non-linear state, and an unstable state in which the graph of the quantity

.3 as a function of the depth of the dent has a saddle-point (Figure 40).

3

J 9,<(_</.#

Figure 40
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At p = PH the stable and unstable states of equilibrium merge into one state,
in which 3 has a parabolic point, i.e., the first and the second variations of ..9 are

zero. The total energy in that state is greater taan tn the zero state. Consequent-

ly, if p is only a little larger than PH the energy of the non-linear state is greater
than in the state before the snap.

At some value of p greater than PH' the to:al energy of the non-linear state

becomes equal to the energy of the zero state. Ye shall denote this value of the

pressure by pM. In the case under consideratioL pM differs but little from pH.

The computation of PM is simpler, however, than that of PH, and therefore in what

follows we shall frequently limit ourselves to the determination of PM- Let us also
note that, as shown in Figure 40, in order to pass from the zero state to the stable

non-linear state, the shell must overcome an energy barrier which tends to zero as

the pressure p approaches the value Pu. But this barrier may also be surmounted

for pH<_p <_Pu if there exist initial irregularities unfavorable to stability, pressure

pulsations, etc. In the case of a complete shell or a steeply sloping segment, the
surmounting of the energy barrier may also be f _cilitated by a redistribution of the

energy between the dent region and the remainder of the shell, and, in the case of

a shallow segment, by a redistribution of the em rgy between the shell and the sup-

port, which is always elastic in practice. It is i lso possible that so far our theory

has not taken into account the moat accessible nc n-linear forms of buckling (for
example, non-symmetrical forms), in which the barrier is small and can be sur-

mounted for very small irregularities of the she71 which always exist in practice.

In any case, we cannot consider the mechanism _)f the "snap" phenomenon as entire-
ly established, although many attempts have been made in that direction*. The de-

termination of the upper critical load, taking into consideration all the real con-

ditions of the problem, is, as before, the main Froblem of the theory of shell sta-

bility. However, the investigation of the non-linear equilibrium states--in particu-

lar, the determination of pH--is also necessary, as it extends our knowledge of the
loading capacity of shells.

According to the method outlined for solvir £ the problem, we set up the ex-

pression .3' _.9 `3'. retaining, together with t_ e principal terms, also the terms
of the order of (dw/d(_) 5. Introducing the notatiols

:=_'V_, _=b (61.6)

and taking expressions for u and v satisfying the conditions (61.3) and (61.4), name-

ly. setting

-- dg

. = c0oV'_R:zft.),l= a/Pg(:), k(l,i=g,l)--_-(e.= 1)=0, (61.7)

we set up, according to the Ritz method, equatio _s expressing the condition that

the first variation of the total energy is zero:

_3" _0 _' _9"
_-- , --DT-=0, _---0. (61.8)

Besides, to determine PM one has to fulfillthe c<mdition:

3=31 , i.e. ,3'--H, (61. 9)

and at p = pH the second variation of the total energy should be zero, i.e., the
additional condition

* See, for example, articles /XIII. 3/, /XIII. 5/, /XIII. 9/, IXIII. 14/.
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c)2_;(9a _-, c)z..9/c)a_b, bz.gJ_ac)c

#=3/c)aclb, O=,.9/Ob-', oLg/dbc)c

#L9.'OaOc. c)Lg/ObOc, _l)/_c_

=0.

(61.10)

should be satisfied. For a series of functions h and g the corresponding values of

PM had been determined to the first approximation, i.e., by the usual theory of

sha]low shells, and to the second approximation by the more accurate theory of

$ 60. It turned out that the second approximation gives a value of PM smaller by

5-7.5% than the first. Here, it should not be forgotten that in the case under con-

sideration, according to (60. 1) {J0_ 0.15, i.e., is less than one-fifth the boundary

of the region (60.2). In our opinion, the application of the ordinary theory of shal-

low sbel]s shouJd be limited at most to the region

H a

_ ..._--__-q<0. I. (61.11)

From the considered functions h and g, the smallest value of PM is obtained from
the functions

h=(1 ")(_ 1,2:),g=(t _),(1÷o_) (61A2)

for which in the first approximation

p. R E_

Io ]= _ = ¢,,22RI,'_--_"
(61.13)

We also found the value

f¢

)0, ]= %R.: 0.193_, vT-" *' ' (61.14)

This result had been obtained on the assumption of rigid fixing of the edge of

the snap region. In reality, however, the snap region interacts elastically with the

remaining portion of the shell, and therefore we shall give another determination

of the quantity PH, where we shall confine ourselves to the solution of the problem

in the first approximation*.

From (60.9) and (61.2), setting cos A_I, sin 8_0, we find:

12 I(_,,+_)+ 1 (_,_ ,_='

Eliminating u, we obtain:

(61.15)

Whence, and from the equilibrium equation

_ (T_0) = T2,

* For a more comprehensive exposition of the contents of this section see

article /XIU.71.
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where T1 and T2 are the additional membrane stresses, we find the relatlon

I

,'(,,+ _.)-- _,/,,.+,,.=-_,f_+c.

Let

Then

Further

r, 4- Tj=0 for 0--80. (61.16)

% %

if at the boundary of the snap region the condition

is satisfied. Therefore

Let

T,--O for _=%. 461.17)

L,

-- I(r,+ r,),--2T, Tz(l+,,)l_dO =._ jo lt/ _ ) 0_.

w--aRg(_), 02_ b. (61.18)

Introducing these quantities in 461.5), we obtain after rather lengthy calculations

r g.,I . Clah:z=
31 -- 3' = C,,a2b+ 2Ci_a' + Or, --+ _ --eC:a', (6I.19 )_"K

where

' ir"I / "'g ,_c,
! |

/C2_4 5 "dr., CH = g_dS, C1,. = g

I 1

C2¢ = 2d:

o

Let us introduce the new notations

(61.20)

x=-gr c,,, _--b Y "_,,' O, r 6;,'

e, =7_-,, ' ,, V_.,--_7," (61.21)
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Then the energy functional is brought into the form

3"-- _a,c,, _ ±(t=-Fo,_,,-i-_,_')H- Y_L--_, (61.22)

We determine the value of PH from the equations

a_. =0 a_* 0 (61.23)

a_'- " a_, \ a_a_/ " (61.24)

from which, after some minor transformations, we obtain

i 3_= 0_' = i - e,x,,- _,+ Z-,x+ _- e,,

30l k ___ Oz]t=)" (61.25)

For the numerical determination of PH we shall assign to the snap region the damp-

ing function

g=e-":(I -- k¢}. (61.26)

This choice is explained by the fact that in practice the influence of the snap extends

over the entire shell and the parts of the snap region are conditional in the sense

that with _ i>H 0 or, what amounts to the same, with _ i>I, the buckling becomes

small and experimenters do not distinguish it. We shall assume that in the expres-

sion (61.26) the number taken for n was such that for _ >i1 the deflection becomes

negligibly small Then, in the given case the conditions (61. 16) and (61. 17) are ap-

proximately satisfied and in formulas (61.20) one may take infinity instead of unity

as the upper limits of the Integrals.

On calculation we find k_ O.7n,

psR _ 0.16 Et . _0-_8 ° for n=4,
R

6o--_9 ° for n--5. (61.27)

In /XIII. 8/ and /XIII. 16/, R.G. Surkin has considered the generalization of

the theory given here to the case of an ellipsoidal shell, elongated along the axis.

Obviously, the stability loss of such a shell should begin in the equatorial region,

where the radii of curvature R_ and R 2 have the greatest values. In

consideration of this fact, the author assumes that a local stability loss occurs in

the equatorial zone, and an elongated dent with elliptic base is formed whose great-

er diameter is oriented parallel to the axis of revolution of the shell. Let _ _ --"-- 8

and j] be the Gausslan coordinates of the middle surface of the shell. Then th_

dent region may be defined by the inequalities:

(61.28)

where %-- :o/R_, _o--Yo/R,, if 2 x0 and 2 Y0 are the linear dimensions of the snap

region in the direction of the meridian and the equator of the shell. With the intro-

duction of the independent variables _ =a=/a0_, z m pa/_ the contour of the snap

region is determined by the ellipse lq-_--I.

As from geometrical considerations
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= R2/RL = _0_/_,_z, (61.29)

the dent region may be determined ff one knows one of the quantities a 0 and 60.

We shall approximate the displacement components by functions of the form

u _ pzXao_R,h(_, _). _ = p:;_%2_oRjj(_ _), w= )_o2R_(E, _ (61.30)

where pK, p_, k are the parameters required, and the functions h, j, and g should

satisfy the boundary conditions:

h(_, ._)_j(_, _)=0 for |:='q=O, _+_=1,
(61.31)

g(_, _,)=1 for _=_=0. g(,_, r_)=0 for _--[-71=I.

The smallest value of the lower critical pressure PH was obtained with the following
functions, characterizing the snap shape:

g(_, TiJ=e _(:,+'_[i--/_(_4_] (61.32)

Here the boundary conditions (61.31) are approximately satisfied, iffor n one takes

such a number for which the deflection at the bolmdary of the region of buckling
becomes negligibly small.

The parameters P_, _, L _, and the value of PH corresponding to them,

were found from the condition of minimum total energy of the system, where k,

k, ..... k_ were taken as equal to the numbers "ound by trial for a spherical shell.

Results of calculations carried out for var ous values of _ are summarized

in Table XXI.

Table XXI

0 I 0.5 I {_333 [

P_RI_/Et_ OAI4 0284

Comparison of the data in this table with tie values of the upper critical

pressure calculated by formula (57.17) shows t_at with a decrease in _, the ratio

indicated increases, and with 5- 0.333 it becom:s almost equal to unity. This
shows that with the increase of the shell elongati,m the influence of the non-linear
factor decreases.

In conclusion, let us note that the solution given here for an elongated ellip-

soidal shell should be considered only as a first _*pproximation, whose error in-

creases with the increase in eccentricity of the generating ellipse.
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§ 62. Some Remarks on the Method of Solving the Problem of § 61

In solving the problem, yon Karman and Tsien /XIII. 2/ tolerated, as was also

noted by Friedrichs /XIII. 4/, two substantial errors. First, they arbitrarily as-

sumed that £2 = 0. Second, the problem of determining the snap form and the pres-
sures under which the functional of the total energy has the minimal value was re-

placed by them by the problem of determining the smallest values of the pressure

without concerning themselves with the minimization of the energy (the Lagrange-

Dirichlet principle notwithstanding). According to formulas (61.22) and (61.20)

this function has the form

_----/,(x, _)-p/,.(x, _).

According to the method used by yon Karman and Tsien, we find consecutively

o5" _ oI= oA oA (62. 1)

(o_s, _ os,o,l,D.(os, V= o (62.2)

ov ( o,i, _ of, o% _. I oA'_=_0
=_-_ " o_- _ a_a_)"_,-_-) - " (62.3)

The equations obtained for the determination of X, p and PH differ considerably

from the equations (61.25), with the exception of equation (62. 1).

Generally speaking, both procedures lead to identical results only in the case

of small displacements, as then the terms of order higher than the second in the

deflection amplitude drop out of the energy expression.

In that case we have

3" = x'I_',0') --pF, @)1

and, following von Karman, we find

Pl _---P=0pr,)= 0, p=
Op = 0 or o_ o¥, ^
o. _-P o'_ -U'

This latter coincides with the equation 09"/_=0. Besides, (61.24) is satisfied,

and also the equation _9. = 0. Thus it turns out that in linearizing the problem, one

may with equal Justification make use of the equations (61.23) or (62. 1)-(62.3),

where the difference between Pu, PH, and PM vanishes.

Turning to work /XIII. 2/, it should be noted that as a result of the superposi-
tion of the two errors indicated above, a "solution u was incidentally obtained, close

to ours (61.27). However, retaining the assumption £2 ffi 0 and the snap shape

g(_)m(l--E)l, assumed in that work, and applying the correct procedure for the

minimization of the energy, one obtains:

= pl R 0.4,7 Et
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Anerror of another kind was tolerated by Friedricha IXllI.4]: in deriving
formula (7) of his work, he relied, in fact, (m the _ c(mdltion (61.16), without con-

cerning himself with the actual fulfillment of that condition, and therefore the value

obtained by him for the lower critical pressure x. =0.13Et/R l_-_-_v_ is unfounded.

Note that in determining PH ene may limit oneoel_ to equations (61.23), and replace

(61.24) by an equation obtained by miaimintion with respect to _t or p of the expres-

sion for p, obtained from any one of the equation_ (61.23). We propose that the
reader convince himself of the correctness of that uasertion.

In article /XIIL10/ it had been proposed to consider the whole spherical
ad_ell after the snap as con_Lsting of a dent with a circular contour and of the re-

maining ]tort of the shell, where it was assumed that within the dent region the de-

formations are attenuated according to the law of the edge effect. The joining of

both portions of the shell had been provided for in such a way that the displacement,

angle of rotation and bending moment vary continuously on passing across their
boundary, and there is a discontinuity in the shea__ing stress which is taken into

account in smoothing out the imbalances of the approximate solution by the Galerhin

method. Unfortunately. in his solution the author did not consider it necessary to

vary the dent radius in addition to the deflection amplitude, and therefore he obtained

a negative value for the quantity PH" We arrived, by correctly solving the problem
in the same setting In /XIIL 111. at the value

% p.R 0.10 Ea
._ RlV i _-r---_ • (62.4)

Apparently, the difference hat.sen that for]atria and formula (61.27) is ex-

plained by the fact that In deriving the former, one had not ensured, as indicated

above, the smooth variation of the shearing utres_.

In work /XIIL 12/ has been considered the d_termination of PH by integrating
the equilibrium equation by the Galerkin method. :he Galerkin equation being set" up

in the form (25.23). as it is obtained from the principle of virtual displacements.
Here the equation of the components normal to the surface of the shell was multi-

plied during the Integration, not by the deflection function as is usual, but by a

variation of that function taking into account the variation of the deflection ampli-
tude and the snap region.

The deflection function was approxim_ed b_ the expression (61.26). The

value of PH thus obtained differs from (61.27) by L;se than 5 %.

We also call the reader_0 attention to article. • ]XUI.27]. in which it is demon-

strated--proceeding from general considerations-that In determining the critical

load by integrating the equilibrium equation by the Galerkin method, it is necessary,

In order to obtain a solution with an error of the second order of magnitude in com-

parison with the error tolerated in the choice of the approximating function, to mul-

tiplythe left-hand member of that equation precise y by the variation of the approxi-
mating function.
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Chapter X1V

A METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS FOR

NON-LINEAR EQUATIONS IN THE THEORY OF SHALLOW SHELLS

In the preceding chapters we considered approximate variational methods of

solving non-linear problems in the theory of shells. The method set forth below for

solving non linear equations of a cylindrical shell, based on the application of the

method of integration in series form, is really a general method for solving non-

linear boundary value problems in the theory of shallow shells. The method is illust-

rated by an example of a cylindrical strip, rectangular in the plane.

$ 63. Large Deflections of a Rectangular Cylindrical Strip,

Rigidly Fastened at AH Edges

1 °. We shall consider a cylindrical strip, rectangular in the plane, subjected

to the action of a uniform external pressure and rigidly fixed at all the edges. Let

R be the radius of the she/l, 2a the length of the strip along the generators, and 2b

its width. We shall take the origin of coordinates at the center of the strip, the ox-

axis along the generators, and the oy axis along the directriz. Since the generating

and directing cylindrical surfaces are gl._odesic lines, x = 0, and consequently, the

fundamental relations of $24 are considerably simplified. Satisfying all the geomet-

rica2 boundary conditions, u _ _ _ w = d_ldx=O for x =_-_-=: u = _ _v = o_l@y=O

for y = -- b we find from (24. 36) and (24. 53b) the following boundary conditions for

qJ and Mik:

at the edges x = ±a:

/Mn -- vMu _-_0. A4,, _ 0;, (63. la)

at the edges y = ±b:

M,I -- ,M= _ 0, A4a, = O. (63.2a)

The boundary conditions h_(_)_O. &,{_)_0 mean that the respective edges are
inext ensible.

The functions

M..--./M_s uE1.= (- 1)" _.{x)c_¢=y
_m

M. -- .M_=-_f-- (-- Ip y, {),}¢mv,
p.,

M,,(l +,)-- yl-,- (--1)'+- _--,x_-t,¥
,

\ lU.B
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whe re

_m (x) w l -- (-- l)"cos =_x, ?. (y):= I (-- I)" cos O.y,

a b
(63.4)

satisfy the boundary conditions for the moments and the Codazzi compatibility con-
ditions expressed by the moments:

o(M=-v_.)o_ (l +v -_- =v,

0(M,, -_M_) (i._i_,,)_a_,,= O._y

If one denotes the deflection parameters by wren . then

a,.,.=D'l,.._=_p.),, 0"= ]2lEt*.

(63.5)

The functions

_0 __ P / ,#M?,= _ (_,- ,,,), .__,- _-,., - 0,)..,n?,= o (63.6)

mltlsfy the third equilibrium equation (15.9) without taking into account the tangen-

tial stresses. Therefore the general solutions of that equation will be

M.= "_-T_ \TT ,,),_, M,,=._#_+ _ +.,,'I',

- + +
A

where _ 1 and _02 are arbitrary functions, and x_ is expressed in terms of Mik
by the elasticity relations (24.19a). Introducing (63.3) into (24.19a), we find for

the expressions

.,, = D' I.. (-- l)" '"(J_
_n z

m.a

,_=== D' (,,,.(-- l)" _,,.(x cos_,,y
m

m.n

_,,= o' _.]y.,,, (- ])'*. "---"*"_%,_._" _'y
m.a

Let us find the stress function _.

(63.8)

The function

I _ z

_=_(p=x +p,y)+ IA,,I,. (x) cos _..y +

+B.,M,.(y)cos=_.xl+ >_, C,,,,cos=_xcosf_,,y, C0o=O,

where _._=o.L2

(83,9)

L.,(x) == ('1-+--_-1-*@,,,lactha[J_)c_O,.x+xshfJ_x,

I -- _ 1 b=m) ch =.y + y sit =,,,y.M,. (y) = ("_7+ _ "-- -- bcth
ct m (63.10)
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exactlysatisfiestheboundaryconditionsgi ('._): g=(_)= 0 related to the angle of
rotation &wfdn.

Substituting k_ (_)= h= (_)= 0 in the boundary conditions, and expanding in a

Fourier cosine series, we obtain a system of equations for determining the unknown
constants Pl, P2, Ak, Bk:

p,-vp,= _:C_o_-z)%_;pi-,p,=,_ co.( _r_,: (63.11)
m_l n--I

2 "t, "=_-= P, ",_ Z._

where fk and f_are the known quantities

$h =kb

A'= (3 - ,)_,_h_a - "(_-_')_J
sh_ta

A
Substituting for _, and x,_ in (24. 26a), we obtain

(63.12)

(63.13)

m, n_O. l, l, 3, ,.,

, cos _,nx _l(Y) --

: Dt2......... _ 2 J...gmn]re: L[(- l)m+sC'°S=mXCOS_sVlOa(Y)*lrfx)_2n =_

-- (-- 1) m+n+r+* sin _nlx sin i_ny sin a_- s;n PlY ]=.l.,,ll s

Here, taking into account the formulas

2 COS = =rex _ I _ COS 2cruX; 2 SiP. _ amX _ I -- COS 2 _mX.

(63.14)

and after the cancellation of terms, the expression in the square bracket reduces to
the double series

Y. _,.. co_ =_,x cos I_.y, Do0 = O.
m, n-.O.I. 2....

Consequently, equating the coefficients of the same cosines, we shall find an ex-

pression for the constants Cmn in terms of finn- Thus, the compatibility condition
will be exactly satisfied.

For the coefficients Cma , we obtain from (63.14) the expressions
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where

,,c T .f'" p;
a:C.. + D" !-1)--__ D" _.°,

n_ml, l. 3,..

K' _',,Co. = D" Do,,, m,, = l, 2, 3 .....

K,(=i+p_),c.,._ D" f,..(- _'"-" (63.15)

a i

--iS --/) _ll, rl, t,I_l, 2,,+.

k= 1, 2, 3,...,

+oo=!i
-- m,n,r,t--|,2 .

a $

abOl.= _ _ /mn/rs[*]COS_iXCOS_,,dXdy,

-a -1, m..,r._--LL.

i,k= |,2,3 .....

In these equations [*] stands for the square bracket appearing in the right-hand mem-
ber of 163. 141,

Hence, after some tr; nsformations, we obtain:

(-I) k+l
2 D. = ) /+./_.--+_.+-+

m.n--I 2,_++

..1_ _._t 'l_lj .f,,,, /,l' --"_- +"_" l/" +"' LFI'' _'+).... --/'-"m"_' (--+)]J'

r .",

It. _. r

m ,.-l, 2, 3...

JU | _j fisafmr(-- 1) "+,

m,.,r

---'_(_la(- t)'+"h./../..,(b)÷ o( _)"++f,.i.,.s,,,,,(<_)l+

___ _ (--1) ....... /m./,t[l=,i(a) .... (b) I'...._,,(a) l' .... fb_!lo,O. =4B =_s J"

IlL n r. tml. 2. 3+.

(63.16)

where for the integrals we wrote

l.,_ (a) = _ cos _x cos =,_cos .ix dx =
--a

_1 0 0 0

= _- (_,+i-,, + _++-.- - _+.-k),
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I_-_ (a) --/sin _.x sln .,x cos alx d..: --

a o o n

(_l'=l, for i=O, &=O, for i_0).

Oc_ [_Ot,.,._ ._ _.. .....

Thus the compatibility condition (24.26a) and the boundary conditions of the problem

are satisfied exactly, by series.

Now we have to determine the functions of moments % and _z from the

general solutions (63.7). We shall seek the functions _j in series form

mi! a,,,,,n

where Amn and Bmn (m, n = O, I, 2. 3 .... ) are unknown coefficients.

in the relations (63.7), we obtain

_I_ma_nCOS_mXCOS_nY'_-_moCOSa'X'_

1 A
(63.17)

22 2.4,..4,.cos a_x cos p.y 4" A0. cos O_Y+

m--I n_.o n.-o

A

roll a- I n--I

-}-y _. ^ =0.B.0 _. sin =.x Jr pxy -- 2 xj__ -- 2 lYil=

"-! (63.18)

In the given problem, the function _Jis an even function of the coordinates. There-

forethe left-handterms of (63.17) will be even functions of the coordinates, and the

left-hand member of (63.18) will be an odd function, i.e., the choice of functions G

and @2 accords wlth the properties of the functions ? and MiX. From (63.17) we

find for the Fourier coefficients the expressions:

= f f (/V[,2 -- xll c_) COS Ctm.X COS _n,V dXd,

_a -b

@i b

q.( - ,_2 _/cos _.x cos _.y dxdy

2"elb A0/I : flf(_|, -- ZII _) COS _.y dxdy

2ab B.,o
a b

re, n= 1,2,3,...;

re, n-- 1,2,3 ....

Substit utin_

(63.19)
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Multiplying (63.18) by sln_,,,xsln_.y and Integrating, we find the relations between

the coefficients

ab(A,,,._,, q.- B ...... ) - 2ab IAo,,._--_( -- 1)_-} - B_o 2-_- (

a b

=fj'(2 :,2'_ + 2 M,._ pxyi sl .... xsin _.yclxdy
-a --b

(rn, n = I, 2, 3,..);

1)_t=

(63.20)

the Fourier coefficients of sin¢_x and sinp, y of the left-hand member of (63.18)

vanish identically.

Eliminating the Fourier coefficients frora (63. 19) and (63.20), we obtain

a b

"t-(pxy -- 2 _z:_ -- 2 MIz) s in _,nx s in _.y

am

"°,=l-, I°(_,,-_ __,,_)c ,__,_}_ =0. (63.2,

This equation is, in effect, another form of tb: third equilibrium equation of a cylin-

drical strip rigidly fastened at the edges, since by eliminating the functions _, and

from (63. 7) we shall obtain the equilibriun equation. .tit the same time, (63.21)
Is the integrability condition for the equations (63.7) with respect to the functions

4', and ft.,. It is important to note that with cur choice of the functions Mtk and _1_
in the form (63.3) and (63.9), it is impossible to satisfy the third equation of equi-

librium directly as for that one would have to .,xpand p in a cosine series. In (63.21)

the pressure pis not expanded in series. Another advantage of (63.21) consists in

the fact that Mik and ao are not differentiated twice, as is the case in the third equi-

librium equation.

A

Substituting for Mik and xl, from (63.3) and (63.8) in (63.21) and integrating,
we obtain

y.+,., _',-,,+ 6, z _'1- ^_ _.,z

__ l" l 1--'_ 2 ft __

--4(1 "JPJ-I- _bR a.I.,,. (-'IP/.I+

1 ab

_83.22)

where D is the flexural rigidity, and

+(_
(63.23)
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If one expands
be written in the form

¢=_,*_axdy=T -- 7,,,!--1)"/m+
-- -- e, $1-i, 2. 3.. t.=.t, a ....

r, 5, klJ, 2, g.,

2 b

e, _, i, e--l, ,Z, j,. r,$_], 2....

+ I _ , " .... 1' ' 1 " (- 1)'+' (_)'S..'.., ' _ ' --( I _ )'+' ())5;. l..J ,

a b a 6

lm,_ _ ff _ COS _lmX C0$ _my dxdy, [mmff_cosamxdxdy;

-a -6 --a --If

a t6

(63.24)

in a double Fourier series, then the integral in (63.22) may

{63.25)

where we set

(- i)'+" 1"2_. (l+@i_')/_,,(a) ]

2b ' b/ J'

..... ,_- _-ff /;.,,(a)/,;,_(o) -/_,,('0/,,_(_) + _ . (63.26)

Now we shall calculate the integrals (63.24). First we shall expand _ in a Fourier

double series.

Utilizing the formulas

a' '_.(--J): , b_ 4'_( ,)_cos_y;
_' = 5- + 4_ "_" _os*,,.._;y- = 7 + _ ¢.
a

'1__(x)cos o,.x ax = 4_- I)" _h,,p,( ._...o2.)I, +_(.t + g )' ., = o. 1.2.... :
--a

i 4f ,).,, _,(¢. ...._)M,(y)cos_,,ydy= ,I -I- ",)CI_ +._) _ n=O, I, 2 .....

we obtain

_= _2 E.. cos,,,.x cos _,,_,
in. n_O, 1, 2 ....

(63.2_)
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where we set

'

(, +,, (4+ _lJ'

2 2 ]

+ (- _)B' (P-----------'---_''_)sht=, ] (63.28)b

Cok , C_ . Cm are given by (63.15). Introducing _63.27) in (63.24). we obtain

l,.._ab'C,..; I.,= 2ab-C,._; l."= 2ab _,,. (63.29)

Substituting these integrals in (63.25), and the latter in (63.22), we find the pressure
as a function of the deflection parameters.

2 ° . Let us give the approximate solution o_ the problem.

The function

,_ _,, C.,.COS :L.,x_ os _,.y (63,30)

exactly satisfies the boundary conditions g,(,._): (j and satisfies in the mean tne condi-

tions '_d#)=0. This function, however, cannot s_tisfy the compatibility conditions

exactly. Therefore, we shall satisfy it in the variational form

K'AA ¢ -- ,,,-__,,x_z4- _#dxdy=O, (63.31)

-a -o

where the contour integral (24.27) vanishes with 163.30), as it equals

1t = 2K'/Ig=(¢)t@ -- h_(#)_ _l=* ad,_-_-
--=

$

(63.32)

A

Substttuting for x_, from (63.8) and for _ from (63.30) in (63.31), we obtain

K'(=i +_. )' C=. -- D'/_ _- 1)" __" = O" D,,., (63, 33)

where m, n = 1. 2. 3 ..... E) are given in teims off=., by (63.16).

We shall obtain another relation between C_a and finn from (63.23) in the
form
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- 4(I v,)pIa_u-,_)_c __

r. _, i. k--l. 2, ,_ .

r.s,_=LLI,..

-t """>(_ _)'c,, b k_./ "J

_/,,_--1)" *" (_-)'C,,-_-(- 1)"+' (':'-)'C,_,] -- O,
r.#

(63.34)

where Imrk and I_r k are given by (63. 17). Owing to these, considerable simplifi =
cations are possible here

10°

§ 64. Exact Series-Solution for a Strip Hinged at All Edges

The boundary conditions of hinged support

,,=v=_=- '_:_, =O(x=±a); u=v=,w= '_' =0 (y=_+_b),
ox: 0),2

are, according to (24.52a) and (24.52c), equivalent to the boundary conditions in the
stresses and moments:

_, (+)=0, Ring, (_,)=- D' (1 + _)/M,_ay (x= + a),
(64.1)

k,(+)--0,g2(+)-0(y=_+)
A,II,==A@2z=D (on the edges)

The constant of integration in the second of the conditions (64. I) turns out to

be zero owing to the symmetry of the strip. The boundary conditions for the morn-

ants and the Codazzi conditions are satisfied by the functions

m,n

Ml,= 1_$ '[..... ,.,..
_m On )

m,a

where m, n = 1, 3, 5, ... ; a,,, _ mr, t2a, _,, = n'x/2b. (64.2)

Hence for "_ we obtain the expressions:

re.t) m.n

_, ---- D"_ £''" sin .,+x sin [+.y; _v,.. = D'f,../(+t,,,_J,,)',
_,a ",', _" (64.3)

where Wren are the deflection parameters.
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We shall seek the stress function in the for_z_

re, n--1.3, 5

D' f_,
D=. = -- -- -

/,,R _ ( °_ - _ )_ ' (64.4)

where _* satisfies the homgeneous boundary conditions h_(_*) = 0, g: (_*) = G, (t = 1, 2)
and the compatibility conditions for the plate

A A ,

K" _.,__* = x_2-- xlx: =2. (64.5)

_p ** is a biharmonic function of the form

_'*=_[f,.(x)c0s_o,ytFm(y)cos=_-q _ =_ __ m,*' _ 2_' _--_-"
m=t

m= 1,3.5...,

F_(y) = A_,ch_,,,,y+ B'_,._sh_,,,,y,

satisfying the boundary conditions

/=,l,l,**)= o; g, (_**)= _ D_,_P"( _=,.-_°L) sin=_,.cos_..v
m, m.i. & ll,..

(x= 4-_,=),

/==(¢**) = 0; g=(+'*j = '_'
m, n-- 3, &..

+ (2+.) p.=_1sm_,,bcos==x (y= ± b).
(64.6)

whence

From the boundary condition h, I'm**)_ 0 it fellows that

f;,'(a)+ *p_/.,Ca)= _,

A'=--B atha}_ (1--*)p_.j;

consequently,

S ,, A
_,** = [B'_L_(x) cos _y ÷ B_M_(y) cos _,xl,

m--L d. 5..,

where we have set

(64.7)

L_(x) = x sh _=x -- [a th _,.a -F _ l c_ _,_x,

Introducing (64.7) in the boundary conditions (64 6), we obtain

(64.8)

{B" =_ (1 Jr- v) sin =.,a [ch =,.y (b =., th a ,b -- 2) -- =,.y sh =.,y] q-

_ - sir' area cos _y,
an,

m. n--l. a, 5...
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OF Q:,:-....

from which, considering that

b ch a,.y (a_b th a,,b -- 2) --/_..y sh a.,y =

S _zsln _nbch _,_bco_ _nY
n_i & 5 _.

we obtain for B" and B'_ the infinite system of linear equations

B_';.n'
m=i, $, _,

a m ch aOn
re:l, d, ; ...

4 (I 4.- v'l a m Sill :tna '_ B',n fi_ sitl _mb ch _r, zaB_*),..,"
a _ ( a2 ,2m=l 3." . _ 7- "m )2

S I' , ]= D .... [2--k (2 4-v _,,,, sin }rob;

x;:= (_ -- _) sh =°O -- h. _,
chb=,, (64.9)

where the second one is obtained by analogy to the first, and _',and ;i are known

coefficient s.

tion.

where

For q,* we shall take the function (63.9} of the problem of the preceding sec-

Introducing it in the compatibility conditions (24.26a). we obtain

K' S C""(='_ +f_2)_c°s='xc°s}"Y=
_. n=,,O, L 2 -

E [ cos a_xcos a,x cos _,_ycos _sY= O', /,sf,, I ._
L "r Fit

.,'.$.Lk,-,I.&5..

-- sin =ix sin eJrX sin _JaY sin p,y]

a_nt=/a, p;=n=lb, m.n=O. 1, o 3,

(64.10)

(64.11)

(64.11a)
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Here we have set

l.,.,(a)= cos _cos-_cos _-dx, r,s_l,3,5 ....
--a

m_1,2,3 .... ;

r .(a_= stn_stn_-cc, s' a
-a (64.12)

Substituting for CmR from (64.10) in (63.12), we shall find the coefficients A k and Bk of

the function _*. Then the stress function _ will be expressed in terms of the de-

flection parameters. Thus, for the exact fulfillment of the boundary conditions with

respect to _p one has to solve two infinite systems of linear equations (63.12) and
(64.9).

We shall investigate the equilibrium equatic, n. By making the following sub-
stitutions in the general solutions (63. 7)

_,, =-- _-x(f-- bl; +

m._l.&5 ,.

q,_= -- -_y (x' -- a') +

+ _.__L__ lmxco_.... ,_,,.v(: ,) "
k_n ml

m. n--l. _, 5 .-

(64.13)

and using the relations (64. 2), we obtain instead of (63.7) the equation

•' ) 0._,_' (64.14)o,i,+(2+_,, ,_-o; _±, ,_-o;
Oy -- \R --

3 .3 1 v 2

__-1.* 0_2 + oi,,,__ pxV, 164.16)
Oy _ Ox

where _ are the new moment functions. Taking nto consideration the form of the
a

functions x_ and _, we may set

N I

-Fx,= 6,= * Q,S'(x); zz_= ,:_ ax
_1 I k I .l

where N is some finite number, and the functions

a,_ t (x) a ,_*(y)
g?(x), o,,(y), __.__ , ay

are even with respect to their arguments and inchde also the infinite series.

With these notations we obtain from (64.14)
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A N

_,-- _.,.(x)_,.(y)+l, _);

A N

where f 1 and f 2 are arbitrary functions.

Introducing them in (64.15), we obtain

N

& i ¢
-t- 2_,,_.- pxy -t-/, (y) +/: ix),

where f(x, y) is the left-hand member of equation (64.15).

(64. 18)

(64.17)

In order to clarify the nature of the functions f I(Y) and f 2(x) we shall multiply

the above equality by sin arxandthen by sin _,y, where r, s = 1, 3, 5 .... and in-

tegrate the results obtained over the surface of the strip. Taking into account the

l_roperties of the functions =,_ and _,*, we find:

b

-a --b

i.e. , the functions f_(x) and f_(y) are even with respect to their arguments. Further,

we set x = ±a and y = ±b in (64.17). This yields

whence

/,'(y)+f,'(a)=O, f,'(x) +A'(b) = O,

f," (Y)+l,' ix) = --f,' (a)--A' (b)

Integrating (64. 17) over the surface of the strip we have

/," (a)+ /," (b)= o.

Taking that into consideration, we obtain

/,' (y) =--/=' (x)= c,

where C is a constant.

Consequently, in (64.17) the sum of the arbitrary functions is zero.

Now we shall multiply (64.17) by sin arx sin _,y and integrate over the surface

of the strip. Then, by virtue of orthogonality of the system of functions sin arx, we
obtain

a b N

(_-.)=,._. _J=_j t _L ,o, ; --_-- "J (64.18)

-t- 2_,=+ -- pxy} sin =,,,x sin i%ydxdy.
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Let us integrate by parts the terms containing m aad 2. We have:

-_/ sln _" y _ dy = sin _Y _ *(Y)[ 7-ay , --

b

-- _nfc0s _ y _* (y), ly,

a l a

-ffa dw_ _ (x}_1*(x)sin amxdx =-- cos_mx _ dx.
--a _m

Consequently,

a b N

S 5_ "lk(X) d?"(Y)-_'S[n'mXSi[_rlydxdY_dy

-a -b _-I

a

f SmX Sill _.y h I'[ J Y'--$= ! cos dx--
am ,} y-- ,

a b A

_m S _xII'COS$mXCOS_'y_xdy"

-a -I,

Here we have made us of the notations (*). Here, x11 vanishes at the edgesy= ±b.

Analogously one can obtain:

a fb _--i

_----J b
l 2

=2 (-I) - ['cos_.yq(a,y) ty--

em _ 1 A
--_-_.-* cosa.xcos},y _-q-xr: _tdxdy;

&

after taking into account that x22 = 0 at the edges x = :t:a.

Utilizing the equations obtained, we shall re )resent (64.18) in the form

m+_,)ab 4 (_ l)-i-p 2(_0 2 F

-b

+ cos a.,x cos 3.y '-i, + _- F + a,._ -4-
--a -b

+ 2xt2 sin :.x sin _n y _ d :dy. 164.191

^

Substituting for x;, from (64.3) in (64. 19), we obt dn by integration

'f "-',+,_ :_/--- _., + (--I) TI'=

-_..t... : S....... + -
R ' D

.... _,J,_,.. 164.20)

-2 .... _7, j'
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where for the integrals we introduced the notations

a b

a b

-a -_

a b b

"mn-- f f *COSamXCOg_'dXd'_ /I_ f *cos _n,(cl.,)d,.

-a --b --b

and V is given by 164.4).

Maldng use of the integral

,,(.Ocos=,xctx- _o + ,) . (=_+ _) 2 ,
--a

164.21)

one may expand the function Lm(x) in a series in cosines of half the argument

,\

The function Mm(y) can be similarly expanded in terms of cos _kY.

function ip will be reduced to the form

=+* 4- _ a_,cos=_,_cos_,y,

where

Then the stress

(64.22)

4_ [p,f-- i) '2 ,.hb,,i. (1_,,_,,%=),_=_a_,= Oj,, -Jr- (i+ _) (°i= "r _,=)= . b=_ +

- a_ J' (64.23)

and the function tp* is given by the series (63.9). Introducing (64.22) in the inte-

grals (64.21), we obtain

+ E _:,.,!,_,.,u_)!.... (b)+ E ,,,,?,_,,t,,/_,,_);

I,_.,,= _ [b¢+sC,ol.',,.+(a)-l-aam,dod,_,,+(b)]-li -
_¢=1. _. $ ..

-i- _. _',_!_,.,(a).,.... (b)+ _ a,,/_,,(a)/..=(#),
_.,_=. _=.. ,,.,=_..,,.s ... (64.24)

_, are the Kroneeker deltas, Ctk are given by (63.28),

a #

[_a=_batnr*_Tf_¢COSa'nXCOS_aYdJ¢dY'_
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and we have introduced the new integrals

=,_ ,,_ ,'_.L.a=() cos-_c0s_cos_ ,
--a

A a

y mr_x ir.xL, (a)= Sift_-Sin __ :OS_ aX.
-a

2o. We shall give the approximate solution of the problem.

The function

(64.25)

m, a=l, 3. 5 .,.
(64.26)

exactly satisfies the boundary conditions hi(V) = 0 and satisfies in the mean the
condition s

y

RK'E_ (_,) = --D'(I + _JyM_=_v, g=(+) =0.

The contour integral (24. 27) is expressed in the form

l==2K" f[gz(Ct)8+--h=(_t) o_+l ]y-_ dx.q-_J I_-_
-a

,b

'RK"_ - _

With (64. 261, it vanishes.

In that case, in (64.20) one should substitute

C A A/,,,,,,,-- _, ,,l,_(a)l._,(b), I,--0,

A A

_.,_= Y, c,,L,,(,,)L,(b_. _..=,,_,c,..
/. ,t_t. & 5 ...

Thereby the equilibrium equation will be exactly satisfied.

Integrating the compatibility conditions by the Bubnov-Galerkin method, we
obtain:

K'(='. + p_.)'C..--_ _.=
A A

_ f, sfOt lrl_-(all'rt_(b) l'imfa)l'_a(b).
,..,. _.*-_. _.5 ... \ =,_,=i_k _,_=J

(m, n = I,3,5, ...),

where the integrals (64.25) have been introduced
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$ 65. Freely-Supported Cylindrical Strip under

Uniform Compression or Elongation and External Normal Pressure

Let me strip be freely supported at all edges and be under the action of an

uniform external pressure and contour forces TII = Pl and T22 = P2, in the absence

of the tangential stress Tt2. The functions _ and Mik satisfy the boundary conditiont

Ou'_=pl, O_'_ =0 MtI=M2z_O (for x=_a),
_y_ 3xa3. '

O_ _- =0 M._M_==O (for y=___b).
-5_;__ = p_' OxOy ' (65.1)

We shall consider the function:

+= I (pax='+ PtY=)"F S Crnncos a',,,x cos [_,,'y +
m,n_O,l.2, ,

"-r- S D,mt cOS amX COS_ y +
m, n_l, $. 5

+ _ IA"F'(x)c°s_'Y+a'f_(Y)c°sa'xl +
re=l, 2, 3 ...

+ S [C'E_(x)c°sO'y+D'E°"(Y)C°S*"xl
m_l, I,3 ..,

( a',,,= mr4a, _, = ran/& _. = m_12a. _,. = rar42b). (6s.2)

Here Dmn and Cmn are determined from (64.4) and (64. I0) respectively and the

single sums are biharmonlc functions. Consequently, (65.2) satisfies the com-

patibility conditions. The functions entering into that expression have the form

m=1,2,3 ....

F_ (x) sh al_ = x sh I_x ch g,_a --a ch g,.x sh _._a,
(65.3)

and the functions E°m (y) and F0m (y) are obtained from Era(x) and Fro(x) by replacing

s by y, a by b, and b by a. Introducing (65.2) in the boundary conditions (65. 1) we

obtain for the determination of the coefficients A m, Bin' Cm' Dm the infinite sys-
tem of linear equations

A,nP,,,(a)--_- _ B_'a_'--l)"i--cth_'b=(2_L) S Dk,._,(--'7

m4-_ #t - I

BmF_(b)--4a_ _ A"k"l { -- I ) _--c t h _l_' S Dm'_'(--I'T. ( °_+o:);
$1=1=1,1.5.., /_-1 3, _

(65.4)
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where m = 1, 3, 5 .... ; Dmn are expressed in tt_rms of the deflection parameters
(64.4)

F',,(a) = 0.5 -{- a_ (sh nO,,) ; F(a)= 0;

4 _-_ t-- 1)_+_ 'J
--C,E,(a)+_ _ D,,, :---_ /_ C_(--I)_;

m_l,2,_.- k 2 ,n,,,_ ]2,, ,3

--D,E,*(b)+ . Cm = C_(-- 1)%

(65.5)

where k = 1, 2, 3, ...; Cmn are expressed in te:-ms of the deflection parameters
(64.10);

e_(a) = a_,'-- cth a_ (l + c.L,cth aOi,)

In deriving (65.4) and (65.5) we made use of the f)rmulas:

a k-i

yF_ (x) cos =,xdx = -- _" (- })2 eth # ,,2 2"2 m,k=l,3.5 ....
( ", + f,_,)

-a
a

E,.(.c) cos ct_'dx =-: rt, k = 1. 2, 3,
(,: + _)_ ....

--a

Introducing the stress function (65.2) in (64.21) and inserting the obtained ex-

pressions in (64.20), we shall obtain a system of cubic equations in the parameters
fmn •

In conclusion, let us note that the above method of solving non-linear boundary

problems is general and may be extended to the L_,vestigation of the stability of
shallow shells, rectangular in the plane. By usir g this method, one can extend the

domain of solved problems by expanding the requ: red functions in complete systems
of other special functions. The numerical evaluation of the exact solutions obtained

in series presents no difficulties of principle, bu, involves cumbersome computa-

tions, due to the necessity of solving a system of non-linear algebraic equations for

the required parameters. The successful overcoming of these difficulties requires

the use of computers. The solution of the same problems by the method of P. F.

Papkovich was given in article /XIV. 1/.
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